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Abstract

A new integrated aero-structural design method for aerospace vehicles is presented. The
approach combines an aero-structural analysis solver, a coupled aero-structural adjoint
solver, a geometry engine, and an efficient gradient-based optimization algorithm. The
aero-structural solver ensures accurate solutions by using high-fidelity models for the aero-
dynamics, structures, and coupling procedure. The coupled aero-structural adjoint solver is
used to calculate the sensitivities of aerodynamic and structural cost functions with respect
to both aerodynamic shape and structural variables. The aero-structural adjoint sensitivi-
ties are compared with those given by the complex-step derivative approximation and finite
differences. The proposed method is shown to be both accurate and efficient, exhibiting a
significant cost advantage when the gradient of a small number of functions with respect
to a large number of design variables is needed. The optimization of a supersonic business
jet configuration demonstrates the usefulness and importance of computing aero-structural
sensitivities using the coupled-adjoint method.
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Chapter 1

Introduction

1.1 MDO in Aircraft Design

A considerable amount of research has been conducted in multidisciplinary design opti-
mization (MDO) and its application to aircraft design. Due to its multidisciplinary nature,
aeronautical engineering was one of the first applications of MDO. Aircraft are extremely
complex systems whose design requires the detailed consideration of disciplines such as
aerodynamics, structures, materials, controls, and propulsion. Wakayama [68], for exam-
ple, showed that in order to obtain realistic wing planform shapes with aircraft design
optimization, it is necessary to include multiple disciplines in conjunction with a complete
set of real-world constraints.

Since the inception of MDO, research in this field has yielded many different techniques
for inter-disciplinary coupling in both analysis and optimization as well as applications of
these techniques to real-world design problems. Surveys by Sobieski and Haftka [65], and
Alexandrov and Hussaini [3] present excellent descriptions of the various existing strategies
for MDO. A number of ideas for solving complex MDO problems have been developed.
These ideas include multilevel optimization strategies [4, 35], collaborative optimization [12,
37, 17], individual discipline feasible methods [16], as well as integrated coupled optimization
procedures [23, 49, 43, 45, 44].

Unfortunately, most of the MDO so far has featured low-fidelity models of the par-
ticipating disciplines. However, during the past decade high-fidelity methods for analysis
of complex engineering problems such as those found in fluid dynamics and structural me-
chanics have reached a mature stage: many difficult numerically intensive problems are now
readily solved with modern computer facilities. The aircraft design community is increas-
ingly using computational fluid dynamics (CFD) and computational structural mechanics

1



2 CHAPTER 1. INTRODUCTION

(CSM) tools to replace traditional approaches based on simplified theories and wind tun-
nel testing. With the advancement of these numerical analysis methods well underway,
the stage is now set for the integration of these tools with the objective of performing
high-fidelity MDO.

One of the defining characteristics of the various MDO strategies is the amount of com-
munication that is required between the disciplines in both the analysis and the optimization
procedures. The allowable level of disciplinary autonomy is usually inversely related to the
number of variables exchanged in the interdisciplinary coupling. Thus, for problems where
large numbers of variables are exchanged between disciplines, it may be necessary to resort
to fully integrated MDO, while for problems with low dimensionality coupling, modular
strategies may hold an advantage in terms of ease of implementation.

The level of coupling between the disciplines in a multidisciplinary system is problem
dependent and significantly affects the choice of MDO strategy. Difficulties also arise from
the wide variety of design problems: an approach that is applicable to one problem may not
be appropriate for another. High-fidelity aero-structural optimization, for example, features
interdisciplinary coupling that requires a large number of design variables. Furthermore, the
values of the objective functions and constraints depend on highly coupled multidisciplinary
analyses. Therefore, a tightly coupled MDO environment is adopted for the high-fidelity
aero-structural optimization problem that constitutes the focus of this work.

1.2 Optimization Methods

Computational design procedures are based on numerical analysis methods that evaluate
the relative merit of a set of feasible designs. The merit of a design is based on the value
of an objective function that is computed using numerical simulations such as CFD and
CSM programs. The choice of objective function is extremely important and requires a
deep knowledge of the multidisciplinary design problem at hand.

Traditionally, the process of design using numerical simulations has been carried out by
trial and error, relying on the intuition and experience of a designer to select variations in the
design parameters. However, as the number of design variables is increased, the designer’s
ability to make the correct choices diminishes. To efficiently span a design space of large
dimensionality, numerical simulations needs to be combined with automatic optimization
procedures.
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A constrained optimization problem can be presented in the general form as,

minimize I(xj)

w.r.t xj j = 1, 2, . . . , Nx (1.1)

subject to gm(xj) ≥ 0, m = 1, 2, . . . , Ng

where I is a nonlinear function of Nx design variables xj , and gm are the Ng nonlinear
inequality constraints we have to satisfy. For a given design problem, a number of pa-
rameters, xj , are allowed to vary when searching for the design with the best figure of
merit. Optimization algorithms are concerned with finding the design variables that yield
the optimum.

There are a large number of algorithms for numerical optimization, but they all fall into
one of two main categories. In the first category we have the zeroth order methods which
include grid searching, genetic algorithms, neural networks, random searches and simulated
annealing. None of these methods rely on any information other than the value of the
objective function.

Grid searching is an approach that systematically surveys the design space by evaluating
each point in a multidimensional grid. The main problem with this method is that the
number of function evaluations required for optimization increases exponentially with the
number of design variables and it quickly becomes prohibitively expensive to perform a grid
search for more than a few design variables.

In contrast with grid searching, random searches are a non-systematic way of spanning
the design space. These methods do not require as many function evaluations, but they do
not guarantee that the optimum will be found and are also prone a dramatic increase in
cost for large numbers of design variables.

Among gradient-free optimization methods, the nonlinear simplex is one of the most
widely used [50]. To create a simplex, N + 1 points are evaluated in N -dimensional space.
The simplex then moves, expands and contracts as it explores the design space searching
for the a better point. This method is very simple and robust, but inefficient for problems
with more than half a dozen design variables.

Evolutionary algorithms are another type of optimization methods that offer simplic-
ity and robustness. These algorithms use computational models of evolutionary processes
to choose the design parameters. Evolutionary methods are also have the ability to find
multiple optimal solutions [71, 52].

In sum, the most significant limitation of zeroth order methods is that, as the number
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of design parameters increases, the number of function evaluations needed to reach the
optimum rapidly increases beyond what is currently computationally feasible.

In a second category, we have gradient-based methods, which use not only the value of
the objective function but also its gradient with respect to the design parameters. Gradient-
based optimization algorithms interprets first and sometimes second order sensitivity infor-
mation to take steps in the design space that will lead to the optimum. The main advantage
of gradient methods is that they converge to the optimum with a significantly smaller num-
ber of function evaluations. Unfortunately, these methods only work well when the objective
function varies smoothly within the design space and they only guarantee convergence to a
local optimum. Steepest descent is the simplest gradient method, where each optimization
step is taken in the direction of the gradient vector. Newton methods require second order
sensitivity information — the Hessian matrix — in addition to the first derivatives and
exhibit a much higher rate of convergence. Quasi-Newton, conjugate gradient, and variable
metric strategies approximate the Hessian during the search. Most of these methods use the
sensitivity information to identify a search direction in the design space and then perform a
one-dimensional search in that direction before finding a new search direction [22, 20, 21].

Both zeroth and first order classes of optimization algorithms have a role in solving
engineering problems. In a problem with a limited number of design variables with multiple
local minima or discontinuities, it is clear that a zeroth order method is more suitable. On
the other hand, many single-discipline high-fidelity aircraft design problems feature a large
number of design variables and a smooth design space. These problems are amenable to
the use of gradient-based optimization algorithms. In particular, gradient methods are used
extensively for aerodynamic shape optimization problems because these are often parame-
terized with hundreds of design variables and require computationally expensive high-fidelity
analyses. With a few notable exceptions [62, 52], such requirements make the use of zeroth
order methods infeasible for high-fidelity aerodynamic shape optimization problems.

In this dissertation, a gradient-based strategy is employed, enabling the use of hundreds
or even thousands of design parameters to achieve near optimal shape-structure combina-
tions. This level of design detail — which is arguably necessary at the end of the preliminary
design stage — cannot be treated by non-gradient methods as the analyses involve the so-
lution of a high-fidelity aero-structural system. The optimization algorithm used herein is
NPSOL [20], a state-of-the-art solver for nonlinear programming which is well-suited for
our problem.
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1.3 Sensitivity Analysis

Sensitivity analysis consists in computing derivatives of one or more quantities (outputs)
with respect to a number of independent variables (inputs). Although there are various uses
for sensitivity information, our main motivation is the use of this information in gradient-
based optimization. Since the calculation of gradients is often the most costly step in
the optimization cycle, using efficient methods that accurately calculate sensitivities is ex-
tremely important for timely design methods.

There are a several different methods for sensitivity analysis but since none of them is
the clear choice for all cases, it is important to understand their relative merits. When
choosing a method for computing sensitivities, one is mainly concerned with its accuracy
and computational expense and scalability for increasing numbers of independent variables.
Factors that affect the choice of method include: the ratio of the number of outputs to the
number of inputs, the importance of computational efficiency and the amount of human
effort that is required in the implementation.

1.3.1 Finite Differences

Finite-difference formulae are commonly used to estimate sensitivities. Although these
approximations are neither particularly accurate nor computationally efficient, the greatest
advantage of this method resides in the ease of implementation.

All finite-difference approximations can be derived by truncating a Taylor series ex-
panded about a given point xj . A common estimate for the first derivative is the forward
difference which is given by

df(xj)
dxj

=
f(xj + h)− f(xj)

h
+O(h), (1.2)

where h is the finite-difference interval, or step. The truncation error is O(h), and hence
this is a first-order approximation. Higher-order approximations — such a the second-
order accurate central difference — can be obtained by combining different Taylor series
expansions, but more accurate approximations require more function evaluations.

When estimating sensitivities using finite-difference formulae we are faced with the
“step-size dilemma”, i.e. the desire to choose a small step size to minimize truncation
error while avoiding the use of a step so small that errors due to subtractive cancellation
become dominant.

The cost of calculating sensitivities with finite-differences is proportional to the number
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of design variables since f must be calculated for each perturbation of xj . This means
that if we use forward differences, for example, the cost would be Nx + 1 times the cost of
calculating f . For central differences, the cost would be almost doubled, i.e., 2Nx.

1.3.2 Complex-Step Derivative Approximation

The complex-step derivative approximation is a relatively new method that unlike finite
differences is extremely robust to changes in the step size [46, 47]. The first derivative ap-
proximation can be derived from complex calculus and is represented by the simple formula

df(xj)
dxj

=
Im[f(xj + ih)]

h
+O(h2), (1.3)

where we take the imaginary part of the function evaluation of the design perturbed by
a pure imaginary step and divide it by h to obtain a second order approximation. The
complex-step method is the subject of Chapter 3. As in the case of finite-differencing,
the cost for evaluating a gradient is proportional to the number of variables, Nx. However,
since complex arithmetic is required, this cost is usually more than twice the cost of forward
differencing.

1.3.3 Algorithmic Differentiation

Algorithmic differentiation — also known as computational differentiation or automatic dif-
ferentiation — is a well-established method based on the systematic application of the chain
rule of differentiation to each operation in the program flow [25, 15]. For each intermediate
variable in the algorithm, a variation due to one input variable is carried through, and all
the required sensitivities are computed in one program call. The derivatives given by the
chain rule can be propagated forward (forward mode) or backwards (reverse mode).

The forward mode of algorithmic differentiation is shown to be very similar to the way
the complex-step method works and the cost of computing the gradient is of the same
order, i.e., proportional to the number of design variables. These similarities are discussed
at length in Chapter 3.

In reverse mode, algorithmic differentiation executes the code forward and then back-
ward to calculate derivatives of one function with respect to Nx design variables. The
total number of operations is independent of Nx, but the memory requirements may be
prohibitive, especially for the case of large iterative algorithms.
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1.3.4 Analytic Methods

Analytic approaches such as adjoint and direct methods are the most accurate and efficient
for sensitivity analysis. They are, however, more involved than the other approaches pre-
sented so far because they require knowledge of the governing equations and the algorithm
that is used to solve them, in order to derive and implement a program that solves the
corresponding sensitivity equations.

Adjoint methods are particularly attractive since the cost of computing the gradient
of a given function is independent of the number of design variables. Due to the large
numbers of variables needed for high-fidelity parameterization, an adjoint method for the
aero-structural system is the obvious choice for use in optimization. The coupled-adjoint
method for the aero-structural governing equations is developed in Chapter 4.

1.4 High-Fidelity Aero-Structural Optimization

1.4.1 Previous Work on Aerodynamic Shape Optimization

During the late 1980’s and early 90’s, the maturation of computational fluid dynamics
(CFD) tools and the ever-increasing capability of computer systems enabled the use of
CFD in design [32]. An adjoint method was first applied to the governing equations for
transonic flow by Jameson [30]. This breakthrough enabled gradient-based aerodynamic
shape optimization with respect to many more design variables than was previously feasible.
Since then, high-fidelity aerodynamic shape optimization has been extremely successful,
yielding optimized designs of airfoils [31], wings [60, 33], and full aircraft configurations [59,
55, 56].

The performance of transonic and supersonic designs can be extremely sensitive to
subtle changes in the aerodynamic shape. In the case of a transonic configuration, such
as the business jet shown in Figure 1-1, there is a strong shock on the top surface of the
baseline wing. It is possible to smooth this shock and drastically reduce the wave drag of the
configuration by applying the right combination of small shape variations. Figure 1-2 shows
the result of such variations applied to an airfoil by using an adjoint method in conjunction
with a gradient-based optimizer.

In the case of a supersonic configuration, such as the high-speed civil transport (HSCT)
shown in Figure 1-3, high-fidelity methods are necessary to analyze full configurations that
account for the effect of the nacelles on the design. To take advantage of favorable interfer-
ence between the nacelles and the wing, subtle variations in the wing and nacelle shapes as
well as the position of the nacelles are necessary. Figure 1-3 shows both the baseline and
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Figure 1-1: Surface pressure on a transonic business
jet configuration.

--- Cp* ---

Optimized Aeroelastic Euler Calcultion W25
Mach Alpha Re CL CD Z Cl Cd Cm Load
0.820 -0.133  1.45E+00 -0.37054 -0.00714  180.000  0.40967 -0.00324 -0.19520  0.31181
0.820 -0.052  1.45E+00 -0.37057 -0.01020  180.000  0.35576 -0.00297 -0.15234  0.27077

Figure 1-2: Baseline and optimized
airfoil and pressure coefficient dis-
tributions. Baseline represented by
dashed lines.

optimized designs, where the most noticeable improvement is the weakening of the nacelle
shocks.

When performing high-fidelity aerodynamic shape optimization of both transonic and
supersonic aircraft configurations, a large number of design parameters is required to take
full advantage of this design methodology.

Since aircraft are complex multidisciplinary systems, aerodynamic shape optimization
alone does not suffice for aircraft design. When defining an aerodynamic shape optimization
problem, geometric constraints are often used to prevent impractical designs. In supersonic
wing design, for example, if minimum airfoil thickness constraints are not imposed, aero-
dynamic optimization will decrease the thickness-to-chord ratio of the wing sections to the
extend that it becomes impossible to design a structure that would fit inside the optimized
wing and be able to sustain the required loads.

1.4.2 Motivation for Integrated Aero-Structural Optimization

Within this dissertation, the main motivation for integrating structural design capability
with the existing aerodynamic shape optimization framework was to eliminate the need for
the artificial geometric constraints that are imposed when performing aerodynamic opti-
mization alone.
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Figure 1-3: Surface pressure coefficient of baseline (bottom) and optimized (top) configu-
rations of a supersonic civil transport.

Aero-structural design has traditionally been performed in a cut-and-try basis: aerody-
namicists have an idea of the shape of an “optimal” load distribution and then tailor the
jig shape of the structure so that the deflected wing shape under a 1-g load gives the de-
sired load distribution. This approach may suffice for conventional transport aircraft, where
there is considerable accumulated experience. In the case of either new planform concepts
or new flight regimes, however, the lack of experience combined with the complexities of
aero-structural interactions can lead to designs that are far from optimal.

In the worst case, an ill-informed designer might try to perform sequential optimization
of the participating disciplines. This sequential approach is illustrated in Figure 1-4 for
the case of aerodynamics and structures. Since the aerodynamic optimization is not aware
of the effect that its design variables have on the structural weight, it always yields an
elliptic lift distribution to minimize the drag. The structural optimization, on the other
hand, finds the minimum structural weight for fixed aerodynamic variables. This sequential
optimization process usually converges, but the final result is not the true optimum of the
coupled system.

For maximum lift-to-drag ratio, it is a well-known result from classical aerodynamics
that a wing must exhibit an elliptic lift distribution. For aircraft design, however, it is
usually not the lift-to-drag ratio we want to maximize but an objective function that reflects
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Aerodynamic Optimization

Aerodyamic

Solver
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xS

xS

�,
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Figure 1-4: Diagram representing sequential optimization of aerodynamics and structures.

the overall mission of the particular aircraft. Consider, for example, the Breguet range
formula for jet-powered aircraft

Range =
V

c

CL
CD

ln
Wi

Wf
, (1.4)

where V is the cruise velocity and c is the thrust specific fuel consumption of the powerplant.
CL/CD is the ratio of lift to drag, and Wi/Wf is the ratio of initial and final cruise weights
of the aircraft.

The Breguet range equation expresses a trade-off between the drag and the empty weight
of the aircraft and constitutes a reasonable objective function to use in aircraft design. To
perform aero-structural optimization we can parameterize the aircraft configuration with
both aerodynamic and structural variables and then maximize the range for a fixed initial
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Figure 1-5: An integrated approach to aero-structural optimization.

cruise weight, subject to stress constraints by solving a single optimization. A representation
of this integrated, all-at-once approach is represented in Figure 1-5.

Solving this type of aero-structural optimization problem using an integrated approach,
we obtain the spanwise lift distribution shown in Figure 1-6. This particular optimization
problem employed a panel code for aerodynamics and a one-spar model for the structure
of the wing. The details of this simple aero-structural optimization problem and additional
results are described in Appendix A.

This optimum lift distribution when considering both the aerodynamics and the struc-
tures trades off the drag penalty associated with unloading the tip of the wing, where the
loading contributes most to the maximum stress at the root of the wing structure, in order
to reduce the weight. The end result is an increase in range when compared to the ellipti-
cally loaded wing that results from an increased weight fraction Wi/Wf . The result shown
in Figure 1-6 illustrates the need for taking into account the coupling of aerodynamics and
structures when performing aircraft design.

Despite significant accomplishments in single-discipline optimization in the field of air-
craft design [55, 56, 2], progress towards the development of high-fidelity MDO methods
has been slow, and the modeling of the participating disciplines in most of the MDO ap-
plications that have appeared so far has remained at a relatively low level. While useful
at the conceptual design stage, lower-order models cannot accurately represent a variety of
nonlinear phenomena such as shocks on transonic wings and shock interference in complex
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Figure 1-6: Elliptic vs. aero-structural optimum lift distribution.

supersonic configurations, which can play an important role in the search for the optimum
design.

This is certainly the case in the design of both small and large supersonic transports,
where simple beam theory models of the wing cannot be used to accurately describe the
behavior of the wing structure. In some cases, these aircraft cruise significant portions of
their flight at different Mach numbers. In addition, a variety of studies show that supersonic
transports exhibit a range of undesirable aeroelastic phenomena due to the low bending
and torsional stiffness that result from wings with low thickness to chord ratio. These
phenomena can only be suppressed when aero-structural interactions are taken into account
at the preliminary design stage [8].

An exception to the use of low-fidelity modeling in MDO is the recent work by Giunta [23]
and by Maute et al. [48, 49] where aero-structural sensitivities are calculated using higher-
fidelity models.

1.4.3 Proposed Aircraft Optimization Problem

The objective of this work is to develop techniques for efficiently computing multidisciplinary
sensitivities and use these sensitivities to enable high-fidelity aero-structural optimization of
aircraft configurations. The optimization problem proposed in this section is very simplistic
from the point of view of aircraft design, since it does not take into account engine sizing,
trajectory, tail design, and other disciplines that are part of the complete aircraft design
optimization problem. This problem is intended to be a proof-of-concept design case that
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demonstrates the viability of high-fidelity aircraft design. Since two of the most compu-
tationally intensive disciplines are taken into account, adding the remaining disciplines to
form a framework for aircraft design would be easy by comparison.

Design Parameterization

The aircraft configuration is parameterized using two types of design variables. The first
type of variable modifies the outer mold line (OML) of the configuration while the second
type of variable controls the sizing of underlying structure.

The OML design variables can be applied to any of the components used to define the
aircraft geometry. For each wing-like component (main wing, canard, horizontal tail, etc.),
the shape is modified at a number of specified airfoil sections. Each of these sections may be
independently modified while the spanwise resolution can be controlled by the number and
position of the sections. The shape modifications to the airfoils are linearly lofted between
stations. Various types of design variables may be applied to the airfoils: twist, leading and
trailing edge droop, and Hicks–Henne bump functions, among others. The Hicks–Henne
functions are of the form

b(ζ) = xn

[

sin

(

πζ
log 1

2
log t1

)]t2

, (1.5)

where t1 is the location of the maximum of the bump in the range 0 ≤ ζ ≤ 1 at ζ = t1,
since the maximum occurs when ζα = 1/2, where α = log(1/2)/ log t1. The parameter t2
controls the width of the bump. The advantage of these functions is that when they are
applied to a smooth airfoil, that airfoil remains smooth.

The structural design variables consists of the thicknesses of the structural finite ele-
ments. The topology of the structure remains unchanged, i.e., the number of spars and
ribs and their position are fixed throughout the optimization. Using any of these discrete
parameters as design variables results in a discontinuous design space that is not compat-
ible with the gradient-based design approach. However, because the OML determines the
location of the nodes of the structural model, variations of the OML have an effect on the
depth of the spars and ribs of the wing box.

Objective Function

From the detailed mission analysis of a particular aircraft design it is usually possible to
find the correct trade-off between aerodynamic drag and structural weight. This means
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that we can optimize a design by minimizing the objective function,

I = αCD + βW, (1.6)

where CD is the drag coefficient, W is the structural weight and α and β are scalar param-
eters.

To perform gradient-based optimization, we need the sensitivities of the objective func-
tion (1.6) with respect to all the design variables. Since this objective function is a linear
combination of the drag coefficient and the structural weight, its sensitivity can be written
as

dI
dxn

= α
dCD
dxn

+ β
dW
dxn

. (1.7)

The sensitivity of the structural weight, dW/dxn is trivial, since the weight calculation
is independent of the aero-structural solution. This gradient is calculated analytically for
the structural thickness variables and by finite differences for the OML variables. The
drag coefficient sensitivity, dCD/dxn, is not this trivial since it does depend on the aero-
structural solution.

Constraints

Among the imposed constraints, the most obvious is that lift must always equal the weight
of the aircraft during cruise. In our optimization problem we constrain the CL by period-
ically adjusting the angle-of-attack of the aircraft within the aero-structural solution until
the desired lift is obtained within a specified tolerance. Otherwise, OML design changes
would quickly result in lower drag coefficients simply because of reduced lift. Some design
problems require that the objective function be minimized over a range of operating con-
ditions (multipoint design). In these situations, the appropriate lift constraint would be
imposed at each design point using the same procedure.

In addition to maintaining the CL, the stresses are also constrained so that the yield
stress of the material is not exceeded at various load conditions. There are typically thou-
sands of finite elements describing the structure of the aircraft, and it becomes compu-
tationally very costly to treat these constraints separately. The difficulty of the problem
is that even though there are efficient ways of computing sensitivities of a few functions
with respect to many design variables, and of computing sensitivities of many functions
with respect to a few design variables, there is no known efficient method for computing
sensitivities of many functions with respect to many design variables. Thus, we are left to
choose between treating a large number of design variables or being able to handle multiple
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cost functions and constraints.
For this reason, we lump the individual element stresses using Kreisselmeier–Steinhauser

(KS) functions. In the limit, all element stress constraints can be lumped into a single KS
function, thus minimizing the cost of a large-scale aero-structural design cycle. Suppose
that we have the following constraint for each structural finite element,

gm = 1− σm
σy
≥ 0, (1.8)

where σm is the element von Mises stress and σy is the yield stress of the material. The
corresponding KS function is defined as

KS (gm) = −1
ρ

ln

(

∑

m

e−ρgm
)

. (1.9)

This function represents a lower bound envelope of all the constraint inequalities and ρ

is a positive parameter that expresses how close this bound is to the actual minimum of
the constraints. This constraint lumping method is conservative and may not achieve the
same optimum that a problem treating the constraints separately would. However, the
practicality of KS functions has been demonstrated and constitutes a viable alternative,
being effective in optimization problems with thousands of constraints [64, 2].

Problem Statement

Having defined our objective function, design variables and constraints, we can now sum-
marize the aircraft design optimization problem as follows:

minimize I = αCD + βW

xn ∈ Rn

subject to CL = CLT (1.10)

KS ≥ 0

xn ≥ xnmin .

The stress constraints in the form of KS functions must be enforced by the optimizer
for aerodynamic loads corresponding to a number of flight and dynamic load conditions.
Finally, a minimum gage is specified for each structural element thickness.

Note that it is possible to generalize this problem to account for multiple flight conditions
by including the weighted sum of all the drag coefficients in the objective function. The
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weights would determine the relative importance of each design point. It is also possible to
consider multiple load conditions by enforcing a KS constraint for each load case.

1.5 Dissertation Layout

The rest of this dissertation starts with the description of the aero-structural solver and its
components in Chapter 2. Chapter 3 is dedicated to the complex-step derivative approx-
imation, which is later used for providing benchmark sensitivities in the validation of the
coupled-adjoint method. Results comparing the accuracy and efficiency of the complex-
step method with finite-differences and algorithmic differentiation are also presented in
this chapter. A discussion of analytic methods for sensitivity analysis of multidisciplinary
systems is presented in Chapter 4, along with a discussion of the implementation of the
coupled-adjoint approach for the aero-structural design framework is discussed. The vali-
dation and evaluation of the results given by the aero-structural adjoint approach are also
presented. Then, in Chapter 5, the aero-structural optimization of a supersonic business jet
configuration is performed using the gradients computed by the coupled-adjoint method.
Finally, the conclusions of this work are made in Chapter 6.

1.6 Contributions

The main contributions of this dissertation lie on the theory, implementation and practi-
cal application of two different sensitivity analysis methods: the complex-step derivative
approximation and the coupled-adjoint method.

The theory behind the complex-step derivative approximation is thoroughly explored
and new insights are presented. A methodology for automating the implementation this
method is developed and is used to compute sensitivities of various solvers, including the
aero-structural solver to which the coupled-adjoint method is applied.

The theory for analytic sensitivity analysis for general multidisciplinary systems is uni-
fied by deriving four different methods starting from the same basic equations, including a
previously unpublished method: the alternate coupled-adjoint method. By adopting this
unified approach to deriving the multidisciplinary sensitivity equations, we are able to gain
a broader understanding of this topic and to discuss the relative efficiency and practicality
of the various methods. One of these — the coupled-adjoint method — is implemented in a
framework for aero-structural optimization of aircraft configurations, and practical results
pertaining to a supersonic business jet configuration are presented.



Chapter 2

Aero-Structural Analysis

This chapter describes the analysis tools that are used in the aero-structural design frame-
work: the flow solver, the structural solver, and the procedure for interdisciplinary coupling.
In each of these components, high-fidelity modeling is a requirement to maintain a high level
of overall accuracy.

2.1 Computational Fluid Dynamics

The aerodynamic analysis and design module, SYN107-MB [55], is a multiblock parallel
flow solver that is applicable to both the Euler and the Reynolds Averaged Navier–Stokes
equations. This solver represents the state-of-the art, being accurate and efficient for the
computation of the flow around full aircraft configurations [58, 70]. This module also
includes the mesh perturbation algorithm that is detailed in Section 2.3.2.

Since SYN107-MB is a package for aerodynamic shape optimization, it also includes an
adjoint solver for aerodynamic sensitivity analysis. This capability is out of the scope of
the present chapter and therefore is described in Chapter 4, which focuses on the sensitivity
analysis.

In this work, the flow solver is used exclusively in Euler mode. The flow domain is
discretized using a multiblock structured grid with hexahedral cells and the flow state
variables are evaluated at the center of these cells. This cell-centered discretization is used
in conjunction with a finite-volume scheme to solve the flow equations numerically.

17
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The vector of flow state variables at a given cell center is defined as,

W =
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ρu1

ρu2

ρu3

ρE

















, (2.1)

where ρ is the flow density, u1, u2 and u3 are the three Cartesian components of velocity,
and E is the total (internal plus kinetic) energy. The flux vector is defined as,
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, (2.2)

for the three spatial directions l = 1, 2, 3. The pressure p is related to the total energy E

by the equation of state for an ideal gas,

p = (γ − 1)ρ
(

E − u
2

2

)

, (2.3)

where γ is defined as the ratio of specific heats. The total enthalpy is also related to the
total energy and pressure by,

H = E +
p

ρ
=

c2

γ − 1
+
u2

2
, (2.4)

where c is the isentropic speed of sound given by,

c2 =
γp

ρ
. (2.5)

The semi-discrete form of the flow governing equations can be written as

d
dt

(VijkW ijk) +Rijk = 0, (2.6)

where Vijk is the volume of the cell, W ijk is the state vector, and Rijk is the net flux out of
the cell. The indices i, j, k denote the position of the cell in a block of the three-dimensional
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mesh.

For the cell-centered scheme this flux is given as,

Rijk = F i+1/2,j,k · Si+1/2,j,k − F i−1/2,j,k · Si−1/2,j,k

+ F
i,j+1/2,k

·Si,j+1/2,k − F i,j−1/2,k · Si,j−1/2,k

+ F i,j,k+1/2 · Si,j,k+1/2 − F i,j,k−1/2 · Si,j,k−1/2,

(2.7)

where F i+1/2,j,k is the flux vector on the surface, and Si+1/2,j,k is the vector normal to the
face where the flux is being evaluated and its magnitude is equal to the area of the face.
The flux vector on each face is evaluated by averaging the values at the center of the cells
on either side of the surface, i.e.,

F i+1/2,j,k =
1
2

(F i,j,k + F i+1,j,k). (2.8)

This central-difference approximation ensures that for sufficiently smooth meshes, this
scheme is second-order accurate.

Since the finite-volume scheme is vulnerable to numerical instabilities, numerical dissi-
pation is necessary to damp any spurious oscillations. Numerical dissipation is implemented
by adding an additional term to the semi-discrete form of the flow governing equations (2.6),
i.e.,

d
dt

(VijkW ijk) +Rijk −Dijk = 0, (2.9)

where, Dijk represents all the dissipative terms across the faces of a cell, and can be written
as,

Dijk = di+1/2,j,k − di−1/2,j,k + di,j+1/2,k

− di,j−1/2,k + di,j,k+1/2 − di,j,k−1/2.
(2.10)

The details of the term di+1/2,j,k depend on the particular artificial dissipation scheme.
In this case, the Jameson–Schmidt–Turkel (JST) scheme [34] is used. This technique for
artificial dissipation combines monotonicity and higher order accuracy by blending low
and high order dissipative terms using a pressure sensor. The JST scheme, with small
modifications, can be made to conform to the local extrema diminishing (LED) principle,
whereby local maxima of the solution are not allowed to increase and local minima not
allowed to decrease.

To increase the computational efficiency of the flow solver, the multigrid scheme is used.
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This scheme is used to accelerate the convergence of iterative algorithms by using corrections
obtained from the solutions in a succession of grids that are coarser than the original one.
A larger time step can be used in the coarser grids resulting not only in the acceleration
of the convergence, but also in more efficient damping of low frequency error modes. The
adjoint solver described in the next chapter also uses a multigrid scheme.

2.2 Computational Structural Mechanics

To analyze the structure of the aircraft wing, we use FESMEH, a finite element solver
developed by Holden [28]. The package is a linear finite-element solver that incorporates two
element types and computes the structural displacements and stresses of wing structures.
Although this solver is not as general as some commercially-available packages, it is still
representative of the challenges involved in using large models with tens of thousands of
degrees of freedom.

The main reason for choosing this package was the availability of the source code, which
was a requirement for developing the analytic structural sensitivity analysis methods de-
scribed in Chapter 4.

2.2.1 Finite-Element Method

The finite-element method is a technique that discretizes the structure into one of more sets
of basic structural components Each set exhibits a similar geometry and physical assumption
that corresponds to a specific type of finite element. There is a large number of types of
elements available and the choice depends on the relative importance of accuracy and cost
of the analysis.

The finite elements are connected to adjacent elements by nodal points. Acting at each
nodal point are nodal forces and the node is subjected to displacements which represent
the degrees-of-freedom. Physically assembling these elements to form the whole structure is
equivalent to superimposing these element equations mathematically, The result is a large
set of simultaneous equations which can be solved numerically. After applying the loads
and boundary conditions, the set of equations can be written as

Ku− f = 0. (2.11)

Here,K is the global stiffness matrix of the structure, u is the vector of nodal displacements,
and f is the vector of applied nodal forces. The stiffness matrix is assembled by superposing
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the element stiffness matrices and it is symmetric and non-singular provided that the rows
and columns corresponding to fixed degrees of freedom are eliminated.

For problems with a relatively small number of degrees-of-freedom, i.e. O(102), a
Cholesky factorization is appropriate to solve for the unknown displacements. In this case
the matrix factorization can be stored explicitly and used multiple times with different load
vectors during an aero-structural calculation, assuming that the structure exhibits a linear
behavior and that it remains unchanged. For models with large numbers of degrees-of-
freedom, a sparse Cholesky factorization or sparse LU decomposition is more appropriate.

Substituting the nodal displacements back into each element formulation provides the
distributions of stress and displacements within each element. To determine the displace-
ment field within an element, finite-element theory assumes shape functions that interpolate
the nodal displacements, the simplest of which are linear functions. The displacement of
any point x in the finite element can be written as

u(x) = η(x)ū (2.12)

where η(x) represents the finite-element shape functions and ū is the vector of nodal dis-
placements for that element.

There is also a need to calculate the stresses in the structure, which are a function of
the displacements. In order to derive the relationship between stresses and displacements,
we start with the stress-strain relationship for a given element,

σ = Eε. (2.13)

This equation is — in the general case — a matrix equation, depending on the dimensionality
of the element stresses and strains. The matrix E is usually referred to as the constitutive
law matrix.

The strains at the element level depend on the nodal displacements of the finite element,
i.e.,

ε = bū, (2.14)

where ū denotes the vector of displacements in the local element coordinates, i.e., the
coordinate system aligned with the element. The matrix b for a given type of finite element
is obtained by differentiating the shape functions of that element.

The displacements in local coordinates are obtained from the displacements in the global
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coordinates using the coordinate transformation,

ū = λu. (2.15)

From equations( 2.13 – 2.15) the stresses in each element are then related to the dis-
placements by the following matrix equation,

σ = Su, (2.16)

where S represents the product of the constitutive law matrix, the nodal displacement-strain
matrix and the local-to-global coordinate transformation matrix, i.e.,

S = Ebλ. (2.17)

2.2.2 Wing Structural Model

This solver models a wing with multiple spars, shear webs, and ribs located at various
spanwise stations, and the skins of the upper and lower surfaces of the wing box.

In the modeling of a typical wing structure, triangular plates are used to model the
wing skins. Plates are also used for the shear webs of spars and ribs, while the upper and
lower spar caps are modeled using truss elements. The wing model in our case consisted
of 6 spars and 10 ribs, adding up to a total of 132 nodes, 396 degrees-of-freedom and 640
elements. Figure 2-1 shows the geometry of the finite element structural model.

Two types of finite elements are used: truss and triangular plane-stress plate elements.
Both element types have 3 translational degrees of freedom per node, so the truss has a
total of 6 degrees of freedom and the plate has 9 degrees of freedom. The main limitation
when using these types of elements is that each of the nodes must be simply supported,
implying that we can have only one set of plate elements between any two spars.

In this structural model, the body forces due to the mass of the wing and the fuel inside
the wing are ignored. If taken into account, these forces would counteract the loads due to
lift and reduce the bending moment and shear forces in the structure.

2.3 Aero-Structural Coupling

The coupling of the flow and structural solvers is one of most important components of the
aero-structural design framework. Since the disciplinary solvers are of high fidelity, it is
important to maintain the same level of accuracy in the coupling.
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Figure 2-1: Structural model of the wing. Note that the skins are transparent, revealing
the spars and ribs inside the structural box.

Two issues in the transfer of information between disciplines are of utmost importance
to the success of an automatic design technique. The first one is that the level of fidelity
in the coupling of both disciplines has to be considered carefully in order to guarantee that
the accuracy of the individual disciplines is not jeopardized. The second one is that the
discretization in each discipline — the flow solver mesh and the finite-element model in this
case — must preserve geometric consistency during the design process.

A simple diagram depicting the coupling between the two solvers is shown in Figure 2-2.
There is a mutual dependence in the state of the aero-structural system: the flow solution is
affected by the position and shape of the solid boundary which is dictated by the structural
displacements. These displacements in turn depend on the forces applied to the structure
due the flow pressures at that boundary. An intermediate module, the geometry engine
is also shown in the figure. This module is responsible for keeping a centralized geometry
database of the current geometry as well as for the transfer of the loads and displacements
between disciplines. We now describe in detail each of these three modules.

2.3.1 Geometry Engine and Database

The aircraft is surrounded by fluid which is separated from the structure by the fluid-
structure interface. Therefore, there is a well-defined surface in three-dimensional space
which constitutes the outer-mold line (OML). Because of the importance of the OML in
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Figure 2-2: Simplified view of the aero-structural coupling.

aero-structural analysis and design problems, a separate utility — Aerosurf — is used to
generate and manage the OML. Aerosurf was specifically created for the analysis and design
of aircraft configurations [55, 56, 57].

The baseline geometry of an aircraft configuration is given to Aerosurf in the form
of separate components, each one being described by a series of cross-sections in three-
dimensional space. These components can be fuselages, pylons, nacelles, and wing-like
surfaces. Figure 2-3 shows these components for the full configuration of a transonic business
jet. Wing, fuselage, empennage, pylons and nacelles are the components in this case.

After lofting the sections that define each component using a bi-cubic spline method,
Aerosurf intersects these components and divides the resulting surface into a series of
patches. At this stage, Aerosurf creates a parametric description of each patch and then
distributes points on their surface, forming a fine structured watertight mesh. Thus, the set
of points formed by the grids of all patches represents a discretization of the OML within
Aerosurf. The intersected geometry for the business jet is shown in Figure 2-4.

In addition to providing a high-fidelity description of the aircraft geometry, Aerosurf
also manages a centralized database for the analysis and design of the aircraft. During
analysis, any information that needs to be exchanged through the fluid-structure interface
— such as pressures or structural displacements — is interpolated onto the OML points.
Changes in the OML shape can be due to either structural displacements during aero-
structural analysis or changes in shape design variables between design cycles. While the
changes in the OML that are due to structural displacements are transferred directly to
the OML points, changes due to shape design variables are applied to the un-intersected
components first and then these components are re-intersected, creating a new discretized
representation of the OML.

For the specific case of aero-structural coupling, the interaction occurs over the OML.
Since the OML is defined to have no gaps, the aerodynamic pressure and the structural
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Figure 2-3: Un-intersected components of
a transonic business jet configuration.

Figure 2-4: Intersected components form-
ing the outer-mold line (OML).

displacements fields will be continuous everywhere on the surface. Although the OML is
clearly defined, the interface between a typical CFD mesh and a CSM finite-element model
is usually more blurry. While the CFD mesh points at the solid boundary are positioned
exactly on the OML, most of the CSM finite element nodes are usually located in the interior
of the volume defined by the OML. For example, wing structural models often only model
the wingbox, neglecting the leading and trailing edges which do not contribute significantly
to the overall stiffness of the wing.

To address these issues, we follow the work of Brown [13] in order to carry out the
bidirectional transfer of loads and displacements between the CSM finite element model
and the CFD mesh via the OML database.

The underlying assumption is that the mesh resolution of the Aerosurf database is
comparable to, if not better than, that of the CFD surface mesh. This has always been the
case in our design efforts. An example of an Aerosurf patch — with a reduced number of
points, for clarity — is shown in Figure 2-6, with the surface CFD mesh points associated
with the same patch. Since Aerosurf creates a parametric description of the surface, the
patch provides a very accurate description of the real geometry. For a given geometry, and
after intersecting the aircraft components, an arbitrary number of points is generated on
the OML and their parametric coordinates and patch numbers are stored in the geometry
database. In the next two sections we will see that the OML points play an important role
in the load and displacements transfer since they have both an aerodynamic pressure and
a displacement associated with them.
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The CFD surface mesh points shown in Figure 2-6 lie on the OML surface and, as pre-
viously mentioned, form a grid that is usually coarser than the OML grid. The parametric
coordinates of each CFD surface mesh point for all patches is also stored in the geometry
database. This information is necessary for both the displacement and load transfers.

2.3.2 Displacement Transfer

The objective of the load transfer procedure is to accurately translate the nodal displace-
ments of the CSM model to CFD mesh point displacements. The displacements calculated
by the CSM solver are first transferred onto the OML grid, and then onto the CFD surface
mesh.

From the CSM nodal displacements ū one can easily interpolate the displacement at
any point u(x) on a given finite element using equation (2.12). For the specific case of the
plate elements we use, η(x) is a linear interpolation function.

To determine the deflected shape of the OML from the CSM model displacement field we
use a method first described by Brown [13] which rely on extrapolation functions for the dis-
placements of the internal structure to obtain the OML displacements. These extrapolation
functions are not arbitrary as they must satisfy at least two conditions.

The first condition is that, just like interpolation functions, the extrapolation functions
must accurately reproduce a rigid body translation or rotation. This means that for a given
set of nodal displacements corresponding to a rigid body mode, the extrapolation must
yield a rigid body displacement of the OML. This is not only a reasonable requirement,
but is also crucial to ensure the net force balance of the consistent load vector discussed in
Section 2.3.3. The second requirement is that the resulting OML displacement field must
be continuous over the whole surface.

To extrapolate the structural displacement field to the OML, each OML point, xo, is
associated with a point on the structural model, xa, as shown in Figure 2-5. The associated
point is such that the distance between the two points is minimized. This association is exe-
cuted at the pre-processing stage and it remains the same for a given aircraft configuration,
even after perturbations of the design variables.

We now assume that the vector defining the “link” between the two points, r = xo−xa,
maintains its position and orientation relative to the finite element that contains the asso-
ciated point. The displacement of the OML point, uo, can then be written as a function of
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Figure 2-5: Displacement extrapolation procedure.

the associated point displacements, ua, and rotations, θa, i.e.,

uo = ua−(xo−xa)× θa (2.18)

θ0 = θa (2.19)

Since the displacements and rotations at any point in a finite element can be written as
a linear functions of the nodal displacements u using equation (2.12), we can rewrite the
OML point displacement as,

uo = ηT (xa)u−(xo−xa)× ηθT (xa)u, (2.20)

θo = ηθ
T (xa)u . (2.21)

These equations can be re-written as,

uo = NT u, (2.22)

θo = Nθ
T u, (2.23)

were the extrapolation matrices are defined as,

NT = ηT (xa)− (xo−xa)× ηθT (xa), (2.24)

Nθ
T = ηθ

T (xa). (2.25)

Once we have the displacements for each OML point, the OML displacement field can be
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Figure 2-6: OML and CFD surface meshes on an Aerosurf patch.

obtained by interpolating between the points using the OML parametric description stored
in the geometry database.

This means that the mapping from the OML to the finite-element model is performed on
an explicit point by point basis, for a finite number of points. Displacement field continuity
in the OML is then enforced directly, without requiring continuity from the underlying
structural model.

Unlike the nodes of the CSM model, the CFD surface mesh points are assumed to
exist on the OML. Figure 2-6 shows a representation of both the OML and CFD meshes.
The parametric coordinates of the CFD surface mesh points on the corresponding OML
patches are calculated in a pre-processing step via closest point projection. Therefore the
patch number and the parametric coordinates of the associated point uniquely define the
transfer operator. The CFD points are assumed to be “tied” to these parametric locations
and any displacement of the OML, due to either design variable perturbations or structural
displacements, is transferred to the CFD surface mesh points by evaluating their parametric
locations on the corresponding Aerosurf patches.

Once a perturbation is applied to the surface of the CFD mesh, it must be propagated
throughout the whole multiblock mesh. This volume mesh perturbation is achieved very
efficiently by using the WARPMB algorithm. WARPMB [55] perturbs the volume mesh in
four stages and is illustrated in Figure 2-7. The procedure is as follows:

1. Block faces directly affected by the surface mesh movement — the active faces — are
explicitly perturbed.

2. Edges with end points in contact with active faces — in the same or in adjacent blocks
— are implicitly perturbed with an arc-length attenuation method.
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Figure 2-7: Mesh perturbation procedure used by WARPMB.

3. The interiors of any faces that are bordered by any implicitly perturbed edges or
share any common edges with adjacent active faces are implicitly perturbed with
WARP3QD, a quasi-three-dimensional in-plane mesh perturbation algorithm.

4. A final routine, WARP3D, is used to perturb the interiors of any blocks that have at
least one active or perturbed face.

2.3.3 Load Transfer

In a similar fashion to the displacement transfer procedure, the pressures calculated by the
CFD algorithm are transferred to the structural nodes through the OML points.

In order to transfer pressures from the CFD surface mesh to the OML points, we identify,
in a pre-processing step, the appropriate “donor cell” and the parametric location of each
OML point within this cell. The pressures at the OML points are then calculated by using
bilinear interpolation on the surface of the CFD mesh. The underlying assumption that
ensures the accuracy of this simple transfer is that the OML mesh is of comparable or better
fidelity than that of the CFD surface mesh, and that the two surface representations are
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consistent and watertight.

When a distributed pressure load is applied to a structural finite-element model, it must
first be transformed into an equivalent set of nodal forces. There are two requirements for
this transformation, the first and more obvious of which is that the resultant nodal forces
and moments be the same as those that result from the pressure field for each element.
This is referred to as the consistency requirement and there are an infinite number of sets
of nodal forces that satisfy this requirement.

However, we also require that the load transfer be conservative. Conservation stipulates
that the virtual work performed by the load vector, f , undergoing a virtual displacement of
the structural model, δ u, must be equal to the work performed by the distributed pressure
field, p, undergoing the equivalent displacement of the OML mesh, uo. The virtual work in
the CSM model is given by the dot product

δWCSM = f δ u, (2.26)

while the virtual work performed by the fluid acting on the surface of the OML mesh is
given by the surface integral

δWCFD =
∫

p nuo dS, (2.27)

where the integral is taken over the entire OML and n represents the the unit vector normal
to the OML. For a conservative scheme, δWCFD = δWCSM, and a consistent and conservative
load vector then is given by

f =
∫

p nN dS, (2.28)

where we used the linear relationship (2.23,2.23) for the virtual displacements uo. In Fig-
ure 2-8 we can see how a distributed pressure field (which has been transfered from the CFD
mesh to the points on the OML) is integrated to produce a force vector that is translated
into the nodal forces of a CSM element using equation (2.28).

As mentioned in Section 2.3.2, the transfer matrix N is calculated in a pre-processing
step. Note that this matrix plays a dual role: it provides the appropriate weighting factors
for both the transfer of OML pressures to CSM load vectors (2.28) and the transfer of the
CSM displacements to OML point displacement (2.23,2.23).
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Figure 2-8: Transfer of the pressure on the OML points to the nodal forces on a given finite
element

2.3.4 Aero-Structural Iteration

The aerodynamic and structural solvers are coupled by exchanging information at regular
intervals during the convergence process. This coupling is greatly simplified by the fact that
we only consider static aeroelastic solutions, and hence time accuracy is not an issue.

A diagram representing the aero-structural iteration is shown in Figure 2-9. The first
time the flow solver is called, the displacement field of the structure is initialized to zero.
After N iterations of the flow solver, the surface pressures are translated into nodal forces
and the structural solver is called. The new displacement field is then translated to a
movement of the CFD mesh and N more flow solver iterations are performed. The process
continues until the state of the flow and the structure have converged as determined by the
norm of the flow solver and structural displacement residuals. In our work, N is typically
equal to 10 iterations.

For the configuration shown in Figure 4-3, running the aero-structural solver in Euler
mode requires 86 multigrid cycles to reduce the average density residual by five orders
of magnitude. This represents only a 15% increase when compared with the number of
multigrid cycles that are required for a rigid calculation.
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Figure 2-9: Schematic representation of the aero-structural iteration procedure.

Another factor that must be considered when comparing the cost of an aero-structural
solution to an aerodynamics-only solution is the computational cost incurred by the struc-
tural solver. For the linear finite-element models we use, most of this cost is due to the
factorization of the stiffness matrix. However, since for a linear system the stiffness matrix
does not change unless the structure is modified, only one factorization is necessary for
each aero-structural solution. During the aero-structural iteration the load vector changes
periodically, and the displacement field can be quickly updated in a back-solve operation.

In cases with hundreds of thousands of degrees of freedom, for which it is impractical
to factorize the stiffness matrix explicitly, the cost of the structural solution becomes sig-
nificant, and we would have to resort to efficient solution methods for multiple right-hand
sides.



Chapter 3

The Complex-Step Derivative Approximation

The complex-step derivative approximation is a very simple and elegant formula that can
be used even in the most intricate numerical algorithm to estimate sensitivities. The com-
putational cost of this method, like that of finite differencing, is directly proportional to
the number of design variables and therefore — due to the large number of design variables
encountered in the present work — the analytic method described in Chapter 4 is preferred
for performing optimization. However, the complex-step approximation is still extremely
useful in providing reliable benchmark results that are used for evaluating the accuracy of
the analytic methods developed in the next chapter.

The objective of this chapter is to shed new light on the theory behind the complex-
step derivative approximation and to show that it can be used in any algorithm that relies
on real arithmetic. We also show how the complex-step method is related to algorithmic
differentiation, further contributing to the understanding of this relatively new method. On
the implementation side, we focus on developing automatic implementations, discussing the
trade-offs between complex-step method and algorithmic differentiation when programming
in Fortran. Finally, computational results corresponding to the application of these tools
to large-scale algorithms are presented and compared with finite-difference estimates.

3.1 Background

The use of complex variables to develop estimates of derivatives originated with the work
of Lyness [40] and Lyness and Moler [39]. Their papers introduced several methods that
made use of complex variables, including a reliable method for calculating the nth derivative
of an analytic function. This theory was used by Squire and Trapp [66] to obtain a very
simple expression for estimating the first derivative. This estimate is suitable for use in

33
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modern numerical computing and has been shown to be very accurate, extremely robust
and surprisingly easy to implement, while retaining a reasonable computational cost. The
potential of this technique is now starting to be recognized and it has been used for sensi-
tivity analysis in CFD by Anderson et al. [5] and in an MDO environment by Newman et
al. [51]. Further research on the subject has been carried out by the author [46, 47].

3.2 Theory

3.2.1 Analyticity

With real numbers alone, it is impossible to solve x2 = −1. If we want to solve this equation,
we must extend the set of real numbers by defining a set of new numbers

z = x+ iy, (3.1)

where x and y are real and i =
√
−1. This defines the set of complex numbers which not

only enables us to solve x2 = −1, but in fact any polynomial equation of degree n.

A complex-valued function f(z) is said to be analytic in a given domain if it has a
derivative at every point in that domain. The derivative of f(z) at z is given by

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)
∆z

, (3.2)

provided this limit exists. Given this definition, we should obtain the same derivative for
any small ∆z. Therefore, the derivative in the direction of the real axis (i.e., for ∆z = ∆x)
and the derivative in the direction of the imaginary axis (when ∆z = ∆y) must be the
same, and we can write

∂f

∂y
= i

∂f

∂x
(3.3)

The real and imaginary parts of the function can be separated, i.e.,

f = u+ iv. (3.4)
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Comparing the real and imaginary parts of equation (3.3) we obtain the familiar Cauchy–
Riemann equations,

∂u

∂x
=
∂v

∂y
, (3.5)

∂u

∂y
= −∂v

∂x
. (3.6)

A complex function that satisfies these equations is said to be analytic, which is to say that
it is differentiable in the complex plane.

Note that a complex number is really just one number. It is not unusual to forget this
and think instead of a complex number as two numbers just because we do not have a way
of representing it with a single axis or by a single term. This is an important concept that
is useful in explaining some of the implementation issues described later in this chapter.

3.2.2 First-Derivative Approximations

Finite-differencing formulae are a common method for estimating the value of derivatives.
These formulae can be derived by truncating a Taylor series which has been expanded
about a given point x. A common estimate for the first derivative is the forward-difference
formula, which is derived from the Taylor series expansion,

f(x+ h) = f(x) + hf ′(x) + h2 f
′′(x)
2!

+ h3 f
′′′(x)
3!

+ . . . . (3.7)

By solving for the first derivative, f ′(x) we obtain,

f ′(x) =
f(x+ h)− f(x)

h
+ h

f ′′(x)
2!

+ . . . , (3.8)

where h is the finite-difference interval. The truncation error is O(h), and therefore this
represents a first-order approximation. For a second-order estimate the we can take the
difference between two different Taylor series expansions of f(x+h) and f(x−h), to obtain
the central-difference formula,

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2 f

′′′(x)
3!

− . . . . (3.9)

Higher order finite-difference approximations can also be derived by using combinations of
alternate Taylor series expansions.

When estimating sensitivities using finite-difference formulae we are faced with the
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Figure 3-1: Exact and forward-finite-difference slopes of f(x).

“step-size dilemma”, i.e. the desire to choose a small step size to minimize truncation error
while avoiding the use of a step so small that errors due to subtractive cancellation become
dominant [69, 18]. The truncation error for the forward-difference approximation (3.8),
for example, decreases linearly with h. Figure 3-1 shows how the estimate given by the
forward difference differs from the exact slope due to the truncation error. In theory, as
h tends to zero, the approximate slope tends to the exact one. However, as h tends to
zero, f(x + h) will have progressively more digits in common with f(x), so when using
finite-precision arithmetic, the accuracy of f(x+ h)− f(x) decreases. This phenomenon is
clearly illustrated in the example of Section 3.2.3.

We now show that an equally simple first derivative estimate for real functions can be
obtained using complex calculus. Consider a function, f = u+ iv, of the complex variable,
z = x+ iy. If f is analytic the Cauchy–Riemann equations apply, i.e.,

∂u

∂x
=
∂v

∂y
, (3.10)

∂u

∂y
= −∂v

∂x
. (3.11)

These equations establish the exact relationship between the real and imaginary parts of
the function. We can use the definition of a derivative in the right hand side of the first
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Cauchy–Riemann equation (3.10) to obtain

∂u

∂x
= lim

h→0

v(x+ i(y + h))− v(x+ iy)
h

, (3.12)

where h is a real number. Since the functions that we are interested in are real functions of
a real variable, y = 0, u(x) = f(x) and v(x) = 0. The limit (3.12) can then be rewritten as

∂f

∂x
= lim

h→0

Im [f (x+ ih)]
h

. (3.13)

For a small discrete h, this can be approximated by

∂f

∂x
≈ Im [f (x+ ih)]

h
. (3.14)

We call this the complex-step derivative approximation. This estimate is not subject to sub-
tractive cancellation error, since it does not involve a difference operation. This constitutes
a tremendous advantage over the finite-difference approximation (3.8).

In order to determine the error involved in this approximation, we repeat the derivation
by Squire and Trapp [66] which is based on a Taylor series expansion. Rather than using a
real step h, to derive the complex-step derivative approximation we use a pure imaginary
step, ih. If f is a real function in real variables and it is also analytic, we can expand it in
a Taylor series about a real point x as follows,

f(x+ ih) = f(x) + ihf ′(x)− h2 f
′′(x)
2!
− ih3 f

′′′(x)
3!

+ . . . (3.15)

Taking the imaginary parts of both sides of this Taylor series expansion (3.15) and dividing
it by h yields

f ′(x) =
Im [f(x+ ih)]

h
+ h2 f

′′′(x)
3!

+ . . . . (3.16)

Hence the approximation is an O(h2) estimate of the derivative of f . Notice that if we take
the real part of the Taylor series expansion (3.15), we obtain the value of the function on
the real axis, i.e.,

f(x) = Re [f(x+ ih)] + h2 f
′′(x)
2!
− . . . , (3.17)

showing that f(x) is also correct to O(h2).

The second order errors in the function value (3.17) and the function derivative (3.15)
can be eliminated when using finite-precision arithmetic by ensuring that h is sufficiently
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small. If ε is the relative working precision of a given algorithm, we need an h such that

h2

∣

∣

∣

∣

f ′′(x)
2!

∣

∣

∣

∣

< ε |f(x)| , (3.18)

to eliminate the truncation error of f(x) in the expansion (3.17). Similarly, for the trunca-
tion error of the derivative estimate to vanish we require that

h2

∣

∣

∣

∣

f ′′′(x)
3!

∣

∣

∣

∣

< ε
∣

∣f ′(x)
∣

∣ . (3.19)

Although the step h can be set to extremely small values — as shown in Section 3.2.3 — it
is not always possible to satisfy these conditions (3.18, 3.19), specially when f(x), f ′(x) = 0.

3.2.3 A Simple Numerical Example

Since the complex-step approximation does not involve a difference operation, we can choose
extremely small steps sizes with no loss of accuracy.

To illustrate this point, consider the following analytic function:

f(x) =
ex√

sin3x+ cos3x
. (3.20)

The exact derivative at x = 1.5 is computed analytically to 16 digits and then compared
to the results given by the complex-step formula (3.14) and the forward and central finite-
difference approximations.

Figure 3-2 shows that the forward-difference estimate initially converges to the exact
result at a linear rate since its truncation error isO(h), while the central-difference converges
quadratically, as expected. However, as the step is reduced below a value of about 10−8

for the forward-difference and 10−5 for the central difference, subtractive cancellation errors
become significant and the resulting estimates are unreliable. When the interval h is so small
that no difference exists in the output (for steps smaller than 10−16) the finite-difference
estimates eventually yields zero and then ε = 1.

The complex-step estimate converges quadratically with decreasing step size, as pre-
dicted by the truncation error estimate. The estimate is practically insensitive to small
step sizes and for any step size below 10−8 it achieves the accuracy of the function evalu-
ation. Comparing the optimum accuracy of each of these approaches, we can see that by
using finite differences we only achieve a fraction of the accuracy that is obtained by using
the complex-step approximation.
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Figure 3-2: Relative error in the sensitivity estimates given by the finite-difference and the
complex-step methods with the analytic result as the reference; ε = |f ′ − f ′ref |/|f ′ref |.

Although the size of the complex step can be made extremely small, there is a lower limit
when using finite-precision arithmetic. The range of real numbers that can be handled in
numerical computations is dependent on the particular compiler that is used. In this case,
double precision arithmetic is used and the smallest non-zero number that can be repre-
sented is 10−308. If a number falls below this value, underflow occurs and the representation
of that number typically results in a zero value.

When comparing the relative accuracy of complex and real computations, the analysis
shows that there is an increased error in basic arithmetic operations when using complex
numbers, more specifically when dividing and multiplying [53].

3.2.4 Higher-Derivative Approximations

The derivative of order n of a given analytic function can be calculated by Cauchy’s integral
formula in its general form [61], i.e.,

f (n)(z) =
n!

2πi

∫

Γ

f(ξ)
(ξ − z)n+1

dξ, (3.21)

where Γ is a simple closed positively oriented contour that encloses z. This integral can be
numerically computed using a mid-point trapezoidal rule approximation around a circle of
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radius r [41], yielding,

f (n)(z) ≈ n!
mrn

m−1
∑

j=0

f
(

z + r e2πij/m
)

e2πijn/m
, (3.22)

where if m is the number of points used in the integration, we can approximate a derivative
of order n = 0, 1, . . . ,m− 1.

When comparing conventional finite-difference formulas with the complex numerical
integral (3.22), we observe that both use approximations of the type

∑

aif(xi) where the
coefficients have different signs. However, there is a significant difference between the two.
In conventional methods the step h has to be decreased in order to reduce the truncation
error of the approximation, making it susceptible to subtractive cancellation. If we want to
reduce the truncation error of the complex integration method all we need to do is to increase
the number of function evaluations, i.e. m in the nth derivative approximation (3.22). This
keeps the subtractive cancellation error constant and it is then possible to calculate a bound
on the error involved in this approximation [40].

The complex-step first derivative approximation (3.14) is a special case of the general
approximation (3.22). In this special case, we are interested in the derivative of f on the
real axis, i.e., when z = x, and we substitute r by h. By setting m = 2 in equation (3.22)
and adding π/2 to the angle to start the integration at the top of the circle (x + h eiπ/2)
rather than on the right side (x+ h) we obtain,

f ′(x) ≈ 1
2h

1
∑

j=0

f
(

x+ h ei(πj+π/2)
)

e−i(πj+π/2) (3.23)

≈ i

2h
[f(x− ih)− f(x+ ih)] . (3.24)

From complex variable theory, for a real function of the real variable that is analytic,

f(x+ iy) = u+ iv ⇒ f(x− iy) = u− iv. (3.25)

Therefore, the approximation (3.24) can be simplified to

f ′(x) ≈ i

2h
[u− iv − u− iv] =

v

h
(3.26)

≈ Im [f(x+ ih)]
h

, (3.27)

which is identical to the second-order approximation that we previously derived (3.16). This
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is the only approximation that can be obtained from the nth derivative approximation that
does not involve subtraction and it is only valid for functions whose imaginary part is zero
on the real axis.

3.2.5 Function and Operator Definitions

In the derivation of the complex-step derivative approximation for a function f (3.14) we
assume that f is an analytic function, i.e. that the Cauchy–Riemann equations (3.10,3.11)
apply. It is therefore important to determine to what extent this assumption holds when
the value of the function is calculated by a numerical algorithm. In addition, it would be
useful to explain how real functions and operators can be defined such that the complex-step
derivative approximation yields the correct result when used in a computer program.

Any computer program can be broken down into a sequence of basic operations. The two
main types of operations which are relevant when converting a real algorithm to a complex
one are those performed by relational operators and arithmetic functions and operators.

Relational logic operators such as “greater than” and “less than” are usually not defined
for complex numbers. These operators are often used in programs together with conditional
statements in order to redirect the execution thread. The original algorithm and its “com-
plexified” version must obviously follow the same execution thread. Therefore, defining
these operators to compare only the real parts of the arguments is the correct approach.
Functions that choose one argument such as the maximum or the minimum values are based
on relational operators. Therefore, following the previous argument, we should once more
choose a number based on its real part alone.

Any algorithm that uses conditional statements is likely to be a discontinuous function
of its inputs. Either the function value itself is discontinuous or the discontinuity is in the
first or higher derivatives. When using a finite-difference method, the derivative estimate
will be incorrect if the two function evaluations are within h of the discontinuity location.
However, if the complex step is used, the resulting derivative estimate will be correct right
up to the discontinuity. At the discontinuity, a derivative does not exist by definition,
but if the function is continuous up to that point, the approximation will still return a
value corresponding to the one-sided derivative. The same is true for points where a given
function has singularities.

Arithmetic functions and operators include addition, multiplication, and trigonometric
functions, to name only a few. Most of these have a standard complex definition that is
analytic, in which case the complex-step derivative approximation will yield the correct
result.
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In the case of a function that is not defined at a given point, the algorithm will not return
a function value, and therefore a derivative cannot be obtained. The derivative estimate
will still be correct in an arbitrary neighborhood of the discontinuity.

The only standard complex function definition that is non-analytic is the absolute value
function or modulus. When the argument of this function is a complex number, the function
returns the positive real number, |z| =

√

x2 + y2. The definition of this function was not
derived by imposing analyticity and therefore it will not yield the correct sensitivity when
using the complex-step estimate. In order to derive an analytic definition of the absolute
value function we must ensure that the Cauchy–Riemann equations (3.10, 3.11) are satisfied.
Since we know the exact value of the derivative, we can write

∂u

∂x
=
∂v

∂y
=







−1, if x < 0,

+1, if x > 0.
(3.28)

From equation (3.11), since ∂v/∂x = 0 on the real axis, we get that ∂u/∂y = 0 on the same
axis, and therefore the real part of the result must be independent of the imaginary part of
the variable. Therefore, the new sign of the imaginary part depends only on the sign of the
real part of the complex number, and an analytic “absolute value” function can be defined
as

abs(x+ iy) =







−x− iy, if x < 0,

+x+ iy, if x > 0.
(3.29)

Note that this is not analytic at x = 0 since a derivative does not exist for the real absolute
value. In practice, the x > 0 condition is substituted by x ≥ 0 so that we can obtain a
function value for x = 0 and calculate the correct right-hand-side derivative at that point.

3.2.6 The Connection to Algorithmic Differentiation

When using the complex-step derivative approximation, in order to effectively eliminate
truncation errors, it is typical to use a step that is many orders of magnitude smaller than
the real part of the calculation. When the truncation errors are eliminated, the higher order
terms of the derivative approximation (3.16) are so small that they vanish when they are
added to other terms using finite-precision arithmetic.

We now observe that by linearizing the Taylor series expansion (3.15) of a complex
function about x we obtain

f(x+ ih) ≡ f(x) + ih
∂f(x)
∂x

, (3.30)
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where the imaginary part is exactly the derivative of f times h. The end result is a sensitivity
calculation method that is equivalent to the forward mode of algorithmic differentiation, as
observed by Griewank [24].

Algorithmic differentiation (AD) is a well established method for estimating deriva-
tives [25, 9]. The method is based on the application of the chain rule of differentiation to
each operation in the program flow. For each intermediate variable in the algorithm, a vari-
ation due to one input variable is carried through. As a simple example, suppose we want
to differentiate the multiplication operation, f = x1x2, with respect to x1. Table 3.1 com-
pares how the differentiation would be performed using either algorithmic differentiation in
forward mode or the complex-step method.

Forward AD Complex-Step Method
∆x1 = 1 h1 = 10−20

∆x2 = 0 h2 = 0
f = x1x2 f = (x1 + ih1)(x2 + ih2)
∆f = x1∆x2 + x2∆x1 f = x1x2 − h1h2 + i(x1h2 + x2h1)
∂f/∂x1 = ∆f ∂f/∂x1 = Im f/h1

Table 3.1: The differentiation of the multiplication operation f = x1x2 with respect to x1

using algorithmic differentiation in forward mode and the complex-step derivative approxi-
mation.

As we can see, algorithmic differentiation stores the derivative value in a separate set of
variables while the complex-step method carries the derivative information in the imaginary
part of the variables. In the case of this operation, we observe that the complex-step
procedure performs one additional operation — the calculation of the term h1h2 — which,
for the purposes of calculating the derivative is superfluous (and equal to zero in this case).
The complex-step method will nearly always include these superfluous computations. The
additional computations correspond to the higher order terms in equation (3.16).

Although this example involves only one operation, both methods work for an algo-
rithm with an arbitrary sequence of operations by propagating the variation of one input
throughout the code. This means that the cost of calculating a given set of sensitivities is
proportional to the number of inputs. This particular form of algorithmic differentiation
is called the forward mode. It calculates the derivatives of all the outputs with respect to
one input. The alternative — the reverse mode — has no equivalent in the complex-step
method.

Since the use of the complex-step method has only recently become widespread, there
are some issues that seem unresolved. However, now that this connection to algorithmic
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differentiation is established, we can look at the extensive research on the subject of algo-
rithmic differentiation for some answers.

Important issues include how to treat singularities [10], differentiability problems due
to if statements [7], and the convergence of iterative solvers [6, 26], all of which have been
addressed by the algorithmic differentiation research community.

The singularity issue — i.e. what to do when the derivative is infinite — is handled
automatically by the complex-step method, at the expense of some accuracy. For example,
the computation of

√
x+ ih differs substantially from

√
x+ ih/2

√
x as x vanishes, but this

has not produced noticeable errors in the algorithms that we tested.

Regarding the issue of if statements, in rare circumstances, modification of the original
algorithm is necessary as its differentiability may be compromised by piece-wise function
definitions.

3.3 Implementation

In this section, existing algorithmic differentiation implementations are first described and
then the automatic implementation of the complex-step derivative approximation is de-
scribed in detail for Fortran. Collaboration with another researcher has lead to an addi-
tional implementation in C/C++[47] which will not be extensively described here. Some
notes for other programming languages are also included.

3.3.1 Algorithmic Differentiation

There are two main methods for implementing algorithmic differentiation: by source code
transformation or by using derived datatypes and operator overloading.

In the implementation of algorithmic differentiation by source transformation, the source
code must be processed with a parser and all the derivative calculations are introduced
as additional lines of code. The resulting source code is greatly enlarged and it becomes
difficult to read. This constitutes an implementation disadvantage as it becomes impractical
to debug this new extended code. One has to work with the original source, and every time it
is changed (or if different derivatives are desired) one must rerun the parser before compiling
a new version.

In order to use derived types, we need languages that support this feature, such as
Fortran 90 or C++. Using this feature, algorithmic differentiation can be implemented by
creating a new structure that contains both the value of the variable and its derivative.
All of the existing operators are then redefined (overloaded) for the new type. The new
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operator exhibits the same behavior as before for the value part of the new type, but uses
the definition of the derivative of the operator to calculate the derivative portion. This
results in a very elegant implementation since very few changes are required in the original
program.

Fortran

Many tools for automatic algorithmic differentiation of Fortran programs exist. These tools
have been extensively developed and some of them provide the user with great functionality
by including the option for using the reverse mode, for calculating higher-order derivatives,
or for both. Tools that use the source transformation approach include: ADIFOR [9],
TAMC [19], DAFOR, GRESS [29], Odyssée [14] and PADRE2. The necessary changes to
the source code are made automatically. As explained before, extending the original source
code is a method that usually compromises its maintainability.

The derived datatype approach is used in the following tools: AD01 [54], ADOL-F,
IMAS and OPTIMA90. Although it is in theory possible to develop a script to make the
necessary changes in the source code automatically, none of these tools have this ability and
the changes must be done manually.

C/C++

Well established tools for automatic algorithmic differentiation also exist for C/C++. These
include include ADIC [11], an implementation mirroring ADIFOR, and ADOL-C [27], a
package that uses operator overloading and can operate in the forward or reverse mode and
compute higher order derivatives.

3.3.2 Complex-Step Derivative Approximation

The general procedure for the implementation of the complex-step method for an arbitrary
computer program can be summarized as follows:

1. Substitute all real type variable declarations with complex declarations. It is not
strictly necessary to declare all variables complex, but it is much easier to do so.

2. Define all functions and operators that are not defined for complex arguments.

3. Add a small complex step (e.g. h = 1 × 10−20) to the desired x, run the algorithm
that evaluates f , and then compute ∂f/∂x using equation (3.14).
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The implementation of any derivative calculation method, should be as automatic as
possible. Changing the source code manually is not only an extremely tedious task, but is
also likely to result in the introduction of coding errors in the program.

In Fortran 90, intrinsic functions and operators (including comparison operators) can be
overloaded. This means that if a particular function or operator does not accept complex
arguments, one can extend it by writing another definition that does. This feature makes
it much easier to implement the complex-step method since once we overload the functions
and operators, there is no need to change the function calls or conditional statements. The
compiler automatically determines the argument type and chooses the correct function or
operation.

The complex function and operators needed for implementing the complex-step method
are defined in the complexify Fortran 90 module. The module can be used by any sub-
routine in a program, including pure Fortran 77 subroutines and it redefines all intrinsic
complex functions using the formula (3.30). The intrinsic functions definitions are listed
in Table 3.2. Note that operators — such as addition and multiplication — which are in-
trinsically defined for complex arguments cannot be redefined, according to the Fortran 90
standard. However, the complex operator definitions work well for our purposes.

The way around this restriction on redefinition would be to create a new type of variable,
thus allowing the use of our own function definitions. This is the approach adopted by the
algorithmic differentiation methods that use derived datatypes. The drawbacks of this
approach are that there would be far more changes required to the original source code and
it would no longer compatible with some old Fortran constructs.

In order to automate the implementation, a script that processes Fortran source files
automatically was developed. The script inserts a statement that ensures that the complex
functions module is used in every subroutine, substitutes all the real type declarations by
complex ones and adds implicit complex statements when appropriate. The script was
written in Python [38] and supports a wide range of platforms and compilers. It also makes
the necessary changes to MPI-based parallel implementations and takes care of file I/O
statements. The latest versions of both the script and the Fortran 90 module, are available
from a dedicated web page [42].

This tool for implementing the complex-step method represents, in my opinion, a good
compromise between ease of implementation and algorithmic efficiency. While pure algo-
rithmic differentiation is numerically more efficient, the complex-step method requires far
fewer changes to the original source code, due to the fact that complex variables are a For-
tran intrinsic type. The end result is improved maintainability. Furthermore, practically
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Fortran Function Definition

abs abs(z) =

{

−z ⇐ x < 0
+z ⇐ x ≥ 0

exp ez = ex(cos(y) + i sin(y))

sqrt
√
z =

√

|z|
(

cos (arg(z)/2) + i sin (arg(z)/2)
)

sin sin(z) =
(

eiz − e−iz
)

/2i

cos cos(z) =
(

eiz + e−iz
)

/2

tan tan(z) = tan(x) + iy/ cos2(x)

log log(z) = log |z|+ i arg(z)

log10 log10(z) = log(z)/log(10)

asin arcsin(z) = arcsin(x) + iy/
(√

1− x2
)

acos arccos(z) = arccos(x)− iy/
(√

1− x2
)

atan arctan(z) = arctan(x) + iy/
(√

1 + x2
)

atan2 arctan2(z1, z2) = arctan(x2/x1) + (x2y1 − x1y2) /
(

x2
1 + x2

2

)

sinh sinh(z) = sinh(x) + iy cosh(x)

cosh cosh(z) = cosh(x) + iy sinh(x)

tanh tanh(z) = tanh(x) + iy/ cosh2(x)

dim dim(z1, z2) =

{

z1 − z2 ⇐ x1 > x2

0 ⇐ x1 ≤ x2

sign sign(z1, z2) =

{

+|x1| ⇐ x2 ≥ 0
−|x1| ⇐ x2 < 0

max max(z1, z2) =

{

z1 ⇐ x1 ≥ x2

z2 ⇐ x1 < x2

min min(z1, z2) =

{

z1 ⇐ x1 ≤ x2

z2 ⇐ x1 > x2

Table 3.2: Fortran intrinsic function definitions used in complexify.f90, z = x+ iy.



48 CHAPTER 3. THE COMPLEX-STEP DERIVATIVE APPROXIMATION

all the changes are performed automatically by the use of the script.

Other Programming Languages

In addition to the Fortran and C/C++ implementations described above, some experimen-
tation was done with other programming languages.

C/C++: Neither C nor C++ perform complex arithmetic by default, although there are
complex arithmetic libraries that one can use. In C++, all operators and functions
can be overloaded just as in Fortran 90. The implementation of the complex-step
procedure in C/C++ is discussed in previous work [47].

Matlab: As in the case of Fortran, one must redefine functions such as abs, max and min.
All differentiable functions are defined for complex variables. The results shown in
Figure 3-2 are actually computed using Matlab. The standard transpose operation
represented by an apostrophe (’) poses a problem as it takes the complex conjugate of
the elements of the matrix, so one should use the non-conjugate transpose represented
by “dot apostrophe” (.’) instead.

Java: Complex arithmetic is not standardized at the moment but there are plans for its
implementation. Although function overloading is possible, operator overloading is
currently not supported.

Python: A simple implementation of the complex-step method for Python was also devel-
oped in this work. The cmath module must be imported to gain access to complex
arithmetic. Since Python supports operator overloading, it is possible to define com-
plex functions and operators as described earlier.

Algorithmic differentiation can be implemented in any programming language that sup-
ports derived datatypes and operator overloading. For languages that do not have these
features, the complex-step method can be used wherever complex arithmetic is supported.

3.4 Results

The tool developed in this dissertation to implement the complex-step method automatically
in Fortran has been tested on a variety of programs. One of the most complicated examples
is the high-fidelity aero-structural solver described in Chapter 2.
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Before discussing the results from the aero-structural solver, we present a study of
the accuracy and efficiency of different sensitivity analysis methods for a structural finite-
element solver.

3.4.1 Structural Sensitivities

The structural solver and wing model used in this study are the ones described in Section 2.2.
In this example, the structural box of the wing of a transonic transport is modeled.

In a first study, the sensitivity estimates given by the complex-step derivative approxima-
tion (3.14) and forward finite-difference (3.8) methods are compared for various step sizes.
The sample sensitivity chosen for this study is that of the stress in a spar cap with respect
to its own cross-sectional area. This kind of sensitivity is very important in gradient-based
structural optimization, where the derivatives of the stress constraints are usually required.

Note that in this case, stress is a nonlinear function of the cross-sectional area and,
therefore, we should be able to observe the rate convergence of the estimates for decreasing
step sizes.

Figure 3-3 shows a comparison of results — analogous to that of Figure 3-2 — with
a reference derivative value which is obtained by an exact analytic method. The analytic
method used here is the direct method applied to a discrete linear set of equations as
described by Adelman [1]. This method is included here only to provide a benchmark, since
it has an implementation that is far more involved and code-specific than the other ones.

As expected, the error of the finite-difference estimate initially decreases at a linear
rate. As the step is reduced to a value of about 10−6, subtractive cancellation errors
become increasingly significant and the estimate of the error increases. For even smaller
perturbations — of the order of 10−17 — no difference exists in the output and the finite-
difference estimate eventually goes to zero (ε = 1).

The complex-step estimate converges quadratically with decreasing step size, converging
to the precision of the structural solver when h is of the order of 10−7. Note that the estimate
is still accurate down to a step of order 10−306. Below this, underflow starts to occur, the
estimate is corrupted, and eventually the result becomes meaningless.

A second study compares the accuracy and computational cost between the three meth-
ods mentioned above to an implementation of algorithmic differentiation for Fortran known
as ADIFOR. This is a package that automatically processes a given Fortran program, pro-
ducing a new program that in addition to the original computations also calculates the
desired sensitivities. A sample of the sensitivity results is shown in Table 3.3, and a compu-
tational cost comparison is made in Table 3.4. The computational cost values are normalized
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Figure 3-3: Error of sensitivity estimates given by finite difference and complex step with
the analytic method result as the reference; ε = |f ′ − f ′ref |/|f ′ref |.

with respect to the computation time and memory usage of the complex-step method. The
computations are performed on a SGI Octane with a 195MHz R10000 processor and corre-
spond to the calculation of the sensitivities of the stress in all of the 60 trusses in the wing
structural model with respect to their cross-sectional areas, resulting in a total of 3,600
sensitivities.

The sample sensitivity shown in Table 3.3 is the same one that was used to produce the
results shown previously in Figure 3-3. When compiled using double precision, the finite-
element solver has an accuracy of about 13 digits, so the last 4 digits should be ignored.

The finite-difference sensitivity estimate — shown at the bottom of Tables 3.3 and 3.4 —

Method Sample Sensitivity

Complex −39.049760045804646

ADIFOR −39.049760045809059

Analytic −39.049760045805281

FD −39.049724352820375

Table 3.3: Sensitivity estimate accuracy comparison.
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Method Time Memory

Complex 1.00 1.00

ADIFOR 2.33 8.09

Analytic 0.58 2.42

FD 0.88 0.72

Table 3.4: Relative computational cost comparison for the calculation of the complete
Jacobian.

is obtained using an optimal step (h = 10−7). Even then, the estimate is shown to be only
half as accurate as the other ones. Although this method is extremely easy to implement,
finding a step that gives reasonably accurate estimates is usually a problem and, therefore,
the total computation time is in practice much higher than the one reflected by these results.

As expected, the analytic method was the most accurate, and by far the fastest. The
computation using this method required considerably more memory since a number of new
variables were introduced in the algorithm. As mentioned before, the implementation of the
analytic method is much more involved than in the other cases and this places this method
in a class of its own.

ADIFOR produced very accurate estimates but it was the most costly, with respect to
both computation time and memory usage. This has to do with the fact that ADIFOR
produces a code which is much larger than the original one and which contains many
more statements and variables. This fact constitutes an implementation disadvantage as it
becomes impractical to debug this new code.

The complex-step method was also accurate to the precision of the solver, was reasonably
fast, and used less memory than any other method with the exception of the finite-difference
method. The results were obtained using h = 10−100. In general, the memory requirement
will always be greater than in the case of finite differencing, but never more than twice as
much. As opposed to ADIFOR, the new “complexified” code is practically identical to the
original one and can therefore be worked on directly. With the help of a few compiler flags
one can even produce a single code that can be chosen to be real or complex at compilation
time.

Finally, note that the relative costs given in Table 3.4 may vary for different problems,
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Figure 3-4: Convergence of CD and ∂CD/∂x1 for the aero-structural solver; ε = |f −
fref |/|fref |.

since these costs depend heavily on the ratio of the number of outputs we want to differ-
entiate to the number of design variables with respect to which we want to differentiate.
However, the costs associated with the complex-step method will always be proportional to
those of the finite-difference method.

3.4.2 Aero-Structural Sensitivities

The aero-structural solver and model used here are the same as described in Chapter 2. The
subsequent results have been obtained for the isolated wing of a small transonic business
jet flying at a free-stream Mach number of 0.82 and lift coefficient of 0.352.

To validate the complex-step results for the aero-structural solver, we chose the sensi-
tivity of the drag coefficient with respect to a set of 18 wing shape perturbations.

Since the aero-structural solver is an iterative algorithm, it is useful to compare the
convergence of a given function with that of its derivative, which is contained in its complex
part. This comparison is shown in Figure 3-4 for the drag coefficient and its derivative
with the respect to the first shape design variable, x1. The drag coefficient converges to
the precision of the algorithm in about 300 iterations. The drag sensitivity converges at
the same rate as the coefficient and it lags slightly, taking about 100 additional iterations
to achieve the maximum precision. This is expected, since the calculation of the sensitivity
of a given quantity is dependent on the value of that quantity. The minimum error in the
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Figure 3-5: Sensitivity estimate errors for ∂CD/∂x1 given by finite difference and the com-
plex step for different step sizes; ε = |f − fref |/|fref |; reference is complex-step estimate at
h = 10−20.

derivative is observed to be slightly lower than the precision of the coefficient. When looking
at the number of digits that are converged, the drag coefficient consistently converges to
six digits, while the derivative converges to five or six digits. This can be explained by the
increased round-off errors of complex arithmetic [53], which do not affect the real part when
such small step sizes are used.

The plot shown in Figure 3-5 is analogous to that of Figure 3-2, where the sensitivity
estimates given by the complex-step and forward finite-difference methods are compared
for a varying step sizes. In this case the finite-difference result has an acceptable precision
only for one step size (h = 10−2). Again, the complex-step method yields accurate results
for a wide range of step sizes, from h = 10−2 to h = 10−200 in this case.

The results corresponding to the complete shape sensitivity vector are shown in Figure 3-
6. Although many different sets of finite-difference results were obtained, only the set
corresponding to the optimum step is shown. The plot shows no discernible difference
between the two sets of results.

A comparison of the relative computational cost of the two methods was also performed
for the aerodynamic sensitivities, namely for the calculation of the complete shape sensitivity
vector. Table 3.5 lists these costs, normalized with respect to the solution time of the aero-
structural solver.

The cost of a finite-difference gradient evaluation for the 18 design variables is about 14
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Figure 3-6: Comparison of the estimates for the shape sensitivities of the drag coefficient,
∂CD/∂xi.

Computation Type Normalized Cost

Aero-structural Solution 1.0

Finite difference 14.2

Complex step 34.4

Table 3.5: Normalized computational cost comparison for the calculation of the complete
shape sensitivity vector.
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times the cost of a single aero-structural solution for computations that have converged to
six orders of magnitude in the average density residual. Notice that one would expect this
method to incur a computational cost equivalent to 19 aero-structural solutions (the solution
of the baseline configuration plus one flow solution for each design variable perturbation.)
The cost is lower than this value because the additional calculations start from the previously
converged solution.

The cost of the complex-step procedure is more than twice of that of the finite-difference
procedure since the function evaluations require complex arithmetic. However, the complex-
step calculations are worth this cost penalty since there is no need to find an acceptable
step size a priori, as in the case of the finite-difference approximations: while there was con-
siderable effort involved in obtaining reasonable finite-difference results by trying different
step sizes, no such studies were necessary with the complex-step method.
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Chapter 4

Analytic Sensitivity Analysis of Coupled Systems

In this chapter we present the analytic sensitivity method that is used to solve the final
optimization problem of this dissertation. The following section begins with an introduction
to analytic sensitivity analysis where both the direct and adjoint methods are derived. We
then generalize this theory for coupled systems and derive the sensitivity equations specific
to the aero-structural solver used in the present work. These equations are then solved to
obtain the vector of sensitivities of the wing drag coefficient with respect to wing-shape
variables and we show that, when using the coupled-adjoint method, these sensitivities can
be obtained accurately and efficiently. Finally, we present results of the application of this
sensitivity computation method to the aero-structural optimization of a transonic wing.

4.1 General Formulation

The main objective is to calculate the sensitivity of a multidisciplinary function of interest
with respect to a number of design variables. The function of interest can be either the
objective function or any of the constraints specified in the optimization problem. In general,
such functions depend not only on the design variables, but also on the physical state of
the multidisciplinary system. Thus we can write the function as

I = I(xn, yi), (4.1)

where xn represents the vector of design variables and yi is the state variable vector.

For a given vector xn, the solution of the governing equations of the multidisciplinary
system yields a vector yi, thus establishing the dependence of the state of the system on
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the design variables. We denote these governing equations by

Rk (xn, yi (xn)) = 0. (4.2)

The first instance of xn in the above equation indicates the fact that the residual of the
governing equations may depend explicitly on xn. In the case of a structural solver, for
example, changing the size of an element has a direct effect on the stiffness matrix. By
solving the governing equations we determine the state, yi, which depends implicitly on the
design variables through the solution of the system. These equations may be non-linear, in
which case the usual procedure is to drive residuals, Rk, to zero using an iterative method.

Since the number of equations must equal the number of state variables, the ranges of
the indices i and k are the same, i.e., i, k = 1, . . . , NR. In the case of a structural solver,
for example, NR is the number of degrees of freedom, while for a CFD solver, NR is the
number of mesh points multiplied by the number of state variables at each point. In the
more general case of a multidisciplinary system, Rk represents all the governing equations
of the different disciplines, including their coupling.

xn

Rk = 0

yi
I

Figure 4-1: Schematic representation of the governing equations (Rk = 0), design variables
(xn), state variables (yi), and objective function (I), for an arbitrary system.

A graphical representation of the system of governing equations is shown in Figure 4-1,
with the design variables xn as the inputs and I as the output. The two arrows leading to
I illustrate the fact that the objective function typically depends on the state variables and
may also be an explicit function of the design variables.

As a first step toward obtaining the derivatives that we ultimately want to compute, we
use the chain rule to write the total sensitivity of I as

dI
dxn

=
∂I

∂xn
+
∂I

∂yi

dyi
dxn

, (4.3)

for i = 1, . . . , NR, n = 1, . . . , Nx. Index notation is used to denote the vector dot products.
It is important to distinguish the total and partial derivatives in this equation. The partial
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derivatives can be directly evaluated by varying the denominator and re-evaluating the
function in the numerator. The total derivatives, however, require the solution of the
multidisciplinary problem. Thus, all the terms in the total sensitivity equation (4.3) are
easily computed except for dyi/dxn.

Since the governing equations must always be satisfied, the total derivative of the resid-
uals (4.2) with respect to any design variable must also be zero. Expanding the total
derivative of the governing equations with respect to the design variables we can write,

dRk
dxn

=
∂Rk
∂xn

+
∂Rk
∂yi

dyi
dxn

= 0, (4.4)

for all i, k = 1, . . . , NR and n = 1, . . . , Nx. This expression provides the means for com-
puting the total sensitivity of the state variables with respect to the design variables. By
rewriting equation (4.4) as

∂Rk
∂yi

dyi
dxn

= −∂Rk
∂xn

, (4.5)

we can solve for dyi/dxn and substitute this result into the total derivative equation (4.3),
to obtain

dI
dxn

=
∂I

∂xn
− ∂I

∂yi

− dyi/ dxn
︷ ︸︸ ︷

[

∂Rk
∂yi

]−1 ∂Rk
∂xn

.

︸ ︷︷ ︸

−Ψk

(4.6)

The inversion of the Jacobian ∂Rk/∂yi is not necessarily explicitly calculated. In the case
of large iterative problems neither this matrix nor its factorization are usually stored due
to their prohibitive size.

The approach where we first calculate dyi/dxn using equation (4.5) and then use the
result in the expression for the total sensitivity (4.6) is called the direct method. Note
that solving for dyi/dxn requires the solution of the matrix equation (4.5) for each design
variable xn. A change in the design variable affects only the right-hand side of the equation,
so for problems where the matrix ∂Rk/∂yi can be explicitly factorized and stored, solving
for multiple right-hand-side vectors by back substitution would be relatively inexpensive.
However, for large iterative problems — such as the ones encountered in CFD — the matrix
∂Rk/∂yi is never factorized explicitly and the system of equations requires an iterative
solution which is usually as costly as solving the governing equations. When we multiply
this cost by the number of design variables, the total cost for calculating the sensitivity
vector may become unacceptable.

Returning to the total sensitivity equation (4.6), we observe that there is an alternative
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option when computing the total sensitivity dI/dxn. The auxiliary vector Ψk can be
obtained by solving the adjoint equations

∂Rk
∂yi

Ψk = − ∂I
∂yi

. (4.7)

The vector Ψk is usually called the adjoint vector and is substituted into equation (4.6) to
find the total sensitivity. In contrast with the direct method, the adjoint vector does not
depend on the design variables, xn, but instead depends on the function of interest, I.

We can now see that the choice of the solution procedure (direct vs. adjoint) to ob-
tain the total sensitivity (4.6) has a substantial impact on the cost of sensitivity analysis.
Although all the partial derivative terms are the same for both the direct and adjoint meth-
ods, the order of the operations is not. Notice that for any number of functions, I, we
can compute dyi/dxn once for each design variable (direct method). Alternatively, for an
arbitrary number of design variables, we can compute Ψk once for each function (adjoint
method).

The cost involved in calculating sensitivities using the adjoint method is therefore prac-
tically independent of the number of design variables. After having solved the governing
equations, the adjoint equations are solved only once for each I. Moreover, the cost of
solution of the adjoint equations is similar to that of the solution of the governing equations
since they are of similar complexity and the partial derivative terms are easily computed.

Therefore, if the number of design variables is greater than the number of functions for
which we seek sensitivity information, the adjoint method is computationally more efficient.
Otherwise, if the number of functions to be differentiated is greater than the number of
design variables, the direct method would be a better choice.

The adjoint method has been widely used for single discipline sensitivity analysis and
examples of its application include structural sensitivity analysis [1] and aerodynamic shape
optimization [30, 33].

4.2 Aero-Structural Sensitivity Equations

Although the theory we have just presented is applicable to multidisciplinary systems, pro-
vided that the governing equations for all disciplines are included in Rk, we now explicitly
discuss the sensitivity analysis of multidisciplinary systems, using aero-structural optimiza-
tion as an example. This example illustrates the fundamental computational cost issues
that motivate our choice of strategy for sensitivity analysis. The following equations and
discussion can easily be generalized for cases with additional disciplines.
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In the aero-structural case we have coupled aerodynamic (Ak) and structural (Sl) gov-
erning equations, and two sets of state variables: the flow state vector, wi, and the vector
of structural displacements, uj . In the following expressions, we split the vectors of resid-
uals, states and adjoints into two smaller vectors corresponding to the aerodynamic and
structural systems

Rk′ =











Ak

Sl











, yi′ =











wi

uj











, Ψk′ =











ψk

φl











. (4.8)

Figure 4-2 shows a diagram representing the coupling in this system.

xn

Ak = 0 Sl = 0

wi

uj

I

Figure 4-2: Schematic representation of the aero-structural system.

4.2.1 Coupled-Direct Methods

Using this new notation, the direct sensitivity equation (4.5) for an aero-structural system
can be written as
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= −











∂Ak
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∂Sl
∂xn











. (4.9)

This equation was first written for a multidisciplinary system by Sobieski [63].

In his paper, Sobieski also presents an alternative approach to the problem, which he
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shows is equivalent to (4.9), i.e.,
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∂uj
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, (4.10)

where I denotes the identity matrix. Solving either of these equations (4.9, 4.10) yields the
total sensitivity of the state variables with respect to the design variables. This result can
then be substituted into the aero-structural equivalent of the total sensitivity equation (4.3),

dI
dxn

=
∂I

∂xn
+

∂I

∂uj

duj
dxn

+
∂I

∂wi

dwi
dxn

. (4.11)

In the alternate direct approach (4.10), the partial derivatives of the state variables of
a given system with respect to the variables of the other system (∂wi/∂uj , ∂uj/∂wi) and
the partial derivatives of the state variables with respect to the design variables (∂wi/∂xn,
∂uj/∂xn) have a different meaning from the partial derivatives we have seen so far. In this
formulation, the partial derivatives of the state variables of a given system take into account
the solution of that system. Although the solution of the coupled system is not required,
this is in contrast with the partial derivatives of the residuals in the formulation (4.9), which
do not require the solution of even the single discipline.

The greatest disadvantage of both of these direct approaches, as we discussed earlier, is
that the sensitivity equation must be solved for each design variable xn. For large iterative
coupled systems, the cost of computing the total sensitivities with respect to many design
variables becomes prohibitive, and this approach is impractical.

4.2.2 Coupled-Adjoint Methods

The adjoint approach to sensitivity analysis is also applicable to multidisciplinary systems.
In the case of the aero-structural system, the adjoint equation (4.7) can be written as
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. (4.12)

Note that the matrix in the coupled adjoint equation is the same as in the coupled direct
method (4.9). This matrix, in addition to containing the diagonal terms that appear when
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we solve the single discipline adjoint equations, also has off-diagonal terms expressing the
sensitivity of one discipline to the state variables of the other. The details of the partial
derivative terms of this matrix are described in Section 4.3.

Finally, for completeness, we note that there is an alternative formulation for the
coupled-adjoint method which is parallel to the alternate direct equations (4.10),
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. (4.13)

The alternate adjoint vector, ψ̄k has a different significance here and the total sensitivity
equation for this case is given by

dI
dxn

=
∂I

∂xn
+ ψ̄i

∂wi
∂xn

+ φ̄j
∂uj
∂xn

, (4.14)

where the partial derivatives have the same meaning as in the alternate direct sensitivity
equations (4.10) and are thus rather costly to compute.

4.2.3 The Lagged Coupled-Adjoint Equations

Since the factorization of the full matrix in the coupled-adjoint equations (4.12) would be
extremely costly, our approach uses an iterative solver, much like the one used for the
aero-structural solution, where the adjoint vectors are lagged and the two different sets of
equations are solved separately. For the calculation of the adjoint vector of one discipline,
we use the adjoint vector of the other discipline from the previous iteration, i.e., we solve

∂Ak
∂wi

ψk = − ∂I

∂wi
︸ ︷︷ ︸

Aerodynamic adjoint

− ∂Sl
∂wi

φ̃l, (4.15)

∂Sl
∂uj

φl = − ∂I

∂uj
︸ ︷︷ ︸

Structural adjoint

−∂Ak
∂uj

ψ̃k, (4.16)

where ψ̃k and φ̃l are the lagged aerodynamic and structural adjoint vectors respectively.
Upon convergence, the final result given by this system, is the same as that given by the
original coupled-adjoint equations (4.12). We call this the lagged-coupled adjoint (LCA)
method for computing sensitivities of coupled systems. Note that these equations look like



64 CHAPTER 4. ANALYTIC SENSITIVITY ANALYSIS OF COUPLED SYSTEMS

the single discipline adjoint equations for the aerodynamic and structural solvers, with the
addition of forcing terms in the right-hand side that contain the off-diagonal terms of the
residual sensitivity matrix. This allows us to use existing single-discipline adjoint sensitivity
analysis methods. Note also that, even for more than two disciplines, this iterative solution
procedure is nothing more than the well-known block-Jacobi method.

Once both adjoint vectors have converged, we can compute the final sensitivities of the
objective function by using the following expression

dI
dxn

=
∂I

∂xn
+ ψk

∂Ak
∂xn

+ φl
∂Sl
∂xn

, (4.17)

which is the coupled version of the total sensitivity equation (4.6).

4.2.4 Discussion

The approach for solving the coupled system of sensitivity equations by lagging can also
be used to solve the direct equations (4.9, 4.10) but the disadvantages of these methods
for problems that require iterative methods and are parameterized with a large number of
design variables remain the same.

For the aero-structural optimization problem at hand the aerodynamic portion is usually
characterized by a single objective function and at most a few aerodynamic constraints,
but a large number of design variables. On the other hand, the structural portion of the
optimization problem is characterized by a large number of constraints: the stress in each
element of the finite-element model cannot exceed the material yield stress for a set of
load conditions. Constrained gradient optimization methods generally require that the user
provide the gradient of both the cost function and each non-linear constraint with respect
to all of the design variables in the problem. Using the adjoint approach, the evaluation
of the gradient of each constraint would require an independent coupled solution of a large
adjoint system. Since the number of structural constraints is similar to the number of
design variables in the problem (O(103) or larger), the usefulness of the adjoint approach
is questionable.

Both of the remaining alternatives, the direct and finite-difference methods, are not
advantageous either since they both require a number of solutions that is comparable to the
number of design variables. In the absence of other choices that can efficiently evaluate the
gradient of a large number of constraints with respect to a large number of design variables,
it is necessary to reduce the size of the problem either through a reduction in the number
of design variables or through a reduction in the number of non-linear constraints.
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The reason for the choice of the KS functions to lump the structural constraints now
becomes clear. By employing KS functions, the number of structural constraints for the
problem can be reduced from O(103) to just a few. In some problems, a single KS function
may suffice. If this constraint lumping methodology is effective, an adjoint method would
be very efficient for MDO sensitivities.

4.3 Partial Derivative Term Details

In this section, the details of the calculation of the partial derivative terms in the aero-
structural adjoint equations (4.15, 4.16) and the total sensitivity equations (4.17) are de-
scribed. This description is divided into four sections. The first two sections discuss the
terms involving the partial derivatives of the aerodynamic and structural equations respec-
tively. The last two sections cover the partial derivatives of the drag coefficient (CD) and
the KS function. These four terms are differentiated with respect to the state vectors (wi,
uj) and the vector of design variables (xn).

4.3.1 Partial Derivatives of the Aerodynamic Governing Equations

A number of publications describe in detail the terms involved in the aerodynamic adjoint
equation and its associated boundary conditions [30, 33, 60, 55]. Although we do not
describe these terms in such detail, we do explain the meaning of all the terms, specially
those that arise from the inclusion of structural deformations.

The aerodynamic adjoint equation can be written as

∂Ak
∂wi

ψk = − ∂I

∂wi
. (4.18)

The components of the right-hand side vector are usually non-zero only for those points on
the CFD surface mesh. The aerodynamic adjoint used in our work is based on a continuous
formulation that is derived from the partial differential equations that govern the flow. The
adjoint partial differential equations are then discretized using the same scheme and mesh
as the flow equations. This is in contrast with the discrete approach, where the governing
equations of the flow are first discretized and an adjoint version of these discrete equations
is then constructed by taking the transpose of ∂Ak/∂wi.

The Jacobian ∂Ak/∂wi in the adjoint equation (4.18) represents the variation of the
residuals for each cell of the CFD mesh due to changes in the flow solution for every cell
in the mesh. When a flow variable at a given cell center is perturbed the residuals of
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that cell and other cells in its vicinity are modified. The extent of the influence of these
flow variable perturbations depends on the stencil used in the flow solver: in our case, a
single-level halo of cells is affected. Therefore, even though ∂Ak/∂wi is a very large square
matrix, it is also extremely sparse and its non-zero terms can be easily calculated using
finite differences. In our coupled-adjoint solver this matrix is never stored explicitly and
the adjoint equation (4.15) is solved iteratively, much like the flow solver.

The off-diagonal term ∂Ak/∂uj in the LCA equation (4.16) represents the effect that
the structural displacements have on the residuals of the CFD equations through the per-
turbation of the CFD mesh. When a given structural node moves, both the surface and
the interior of the CFD grid must be perturbed, thus affecting a large number of CFD
mesh points. Even though the flow variables are constant in the calculation of this partial
derivative, the change in the mesh geometry affects the sum of the fluxes, whose variation
is easily obtained by recalculating the residuals for the perturbed cells. Because the actual
term we want to compute in equation (4.16) is the product of this matrix, ∂Ak/∂uj , with
the lagged aerodynamic adjoint vector, ψ̃k, it is possible to multiply each column j by the
adjoint vector as it is calculated. This approach eliminates the need to store the complete
matrix, since we only need to store a vector with the same dimension that of the adjoint
vector.

The term ∂Ak/∂xn in the total sensitivity equation (4.17) represents the direct effect
of the design variables on the CFD residuals of all cells in the mesh. For finite-element
thickness design variables, this term is identically zero, since these design variables do not
affect the CFD residuals explicitly. For shape design variables, this Jacobian is similar to
∂Ak/∂uj , since a change in an OML design variable also perturbs the CFD grid. In the
present work, this term is calculated by finite differencing, since the mesh perturbation
algorithm is very efficient. Again, the term we ultimately want is the vector that results
from the product ψk ∂Ak/∂xn, and the matrix multiplication can be performed as each row
of the matrix is calculated.

The number of CFD mesh perturbations required for the calculation of the aerodynamic
equation sensitivities is equal to Nx + NSM , where Nx is the number of design variables,
NS is the number of surface degrees of freedom of the structural model and M is the
number of times the adjoint vectors are exchanged in the iterative solution of the LCA
equations (4.15,4.16). The cost of computing ψk ∂Ak/∂xn is proportional to Nx, while the
computation of ∂Ak/∂uj ψ̃k is proportional to NS and must be performed M times. Since
Nx +NSM can be very large, it is extremely important that the mesh perturbation proce-
dure be efficient. This is achieved in our case because the mesh perturbation algorithm is
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completely algebraic. The fact that the CFD mesh is structured makes it possible to atten-
uate perturbations applied to the surface throughout the volume mesh. In Section 4.5 we
compare the cost of the complete sensitivity analysis to the cost of the mesh perturbations.

4.3.2 Partial Derivatives of the Structural Governing Equations

When using linear finite-element models for structural analysis, the discretized governing
equations are given by

Sl = Kljuj − fl = 0, (4.19)

where, Klj is the global stiffness matrix of the structure, uj is the vector of nodal displace-
ments, and fl is the vector of applied nodal forces. In our case, the structural model has
a relatively small number of degrees of freedom (O(103)), and a Cholesky factorization is
appropriate to solve for the unknown displacements. The factorization is explicitly stored
and is used to solve the structural equations multiple times with different load vectors.
For large finite-element models, where the number of degrees of freedom exceeds O(105),
alternative approaches to solving the structural equations (4.19) would be more realistic.

To calculate structural sensitivities using the adjoint method we need the partial deriva-
tive of the structural governing equations (4.19) with respect to the displacements, which
is nothing more than the global stiffness matrix, i.e.,

∂Sl
∂uj

= Klj . (4.20)

Hence, the adjoint equations for the structural system are

Kjlφl = − ∂I

∂uj
. (4.21)

Since the stiffness matrix is symmetric (Klj = Kjl), the structural adjoint equations (4.21)
have the same stiffness matrix as the structural governing equations (4.19), i.e., the system
is self adjoint. The only difference between these two sets of equations is the vector in
right-hand side: instead of the load vector in the governing equations (4.19), the adjoint
equations (4.21) have a vector (often referred to as pseudo load) related to the function of
interest, I. As previously mentioned, the stiffness matrix is factorized once when solving
for the displacements and it is therefore possible to reuse this factorization to solve for φl
with only a small additional cost.

The derivative of the structural governing equations with respect to the flow variables,
∂Sl/∂wi, is the other off-diagonal term in the aero-structural adjoint equations (4.12). In
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the LCA equation (4.16) we need this term to compute the lagged term ∂Sl/∂wi φ̃l. The
only term in the governing equations (4.19) that the flow variables affect directly is the
applied force, and thus

∂Sl
∂wi

= − ∂fl
∂wi

= − ∂fl
∂pi′

∂pi′

∂wi
, (4.22)

where we note that the flow variables affect the structural forces via the surface pressures, pi′ .
Although the matrix ∂pi′/∂wi is rather large, it is very sparse since the surface pressures
depend only on a small subset of the flow variables. The matrix ∂fl/∂pi′ is calculated
analytically by examining the procedure that integrates the pressures in the CFD mesh and
transfers them to the structural nodes to obtain the applied forces. The resulting matrix,
∂Sl/∂wi, is rather large, of O(103 × 106), but is never stored explicitly. Since the term we
want is actually the vector ∂Sl/∂wi φ̃l, we calculate one row at a time and perform the dot
product with the structural adjoint vector.

Finally, we also need the partial derivative with respect to the design variables, ∂Sl/∂xn.
The shape design variables have a direct effect on both the stiffness matrix and the load
vector. Although this partial derivative assumes a constant surface pressure field, a variation
in the OML affects the transfer of these pressures to structural loads. Hence,

∂Sl
∂xn

=
∂Klj

∂xn
uj −

∂fl
∂xn

. (4.23)

The element thickness design variables also affect the stiffness matrix, but not the force and
therefore ∂f/∂xn = 0 in this case. As in the case of ∂Sl/∂wi, this matrix is also computed
by finite differences and multiplied by the structural adjoint vector, one row at a time,
eliminating unnecessary storage overhead.

4.3.3 Partial Derivatives of the Drag Coefficient

When solving the adjoint equations for I = CD, we need the partial derivative ∂CD/∂wi to
calculate the right-hand side of the first aero-structural adjoint equation (4.15). The value
of CD only depends on the flow variables corresponding to those cells that lie on the surface
of the aircraft, so this vector is very sparse. The non-zero sensitivities in this vector are
obtained analytically by differentiating the numerical integration procedure of the surface
pressures that produces CD.

The second aero-structural adjoint equation (4.16) contains another partial derivative
of CD, but this one is taken with respect to the structural displacements. The vector
∂CD/∂uj represents the change in the drag coefficient due to the displacement of the wing
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while keeping the pressure field constant. The structural displacements affect the drag
directly, since they change the wing surface over which the pressure is integrated. This
vector of sensitivities is efficiently computed by finite differencing.

Finally, in order to calculate the total sensitivity of the drag coefficient using equa-
tion (4.17), we need the term ∂CD/∂xn. This represents the change in the drag coefficient
due to design variable perturbations, while keeping the pressure and displacement fields
constant. In the case of shape perturbations, ∂CD/∂xn is analogous to ∂CD/∂uj because
these design variables change the surface of integration. This vector is also inexpensively
calculated using finite differences. For structural design variables this term is zero because
they do not affect the OML directly.

4.3.4 Partial Derivatives of the KS Function

As discussed in Section 1.4.3, the other set of sensitivities we are ultimately interested in
is that of the KS function (1.9), i.e., when I = KS. Since this function depends directly on
the stresses we use the chain rule to write,

∂KS
∂uj

=
∂KS
∂gm

∂gm
∂σm

∂σm
∂uj

. (4.24)

Differentiating the KS function (1.9) definition we can write the first term as

∂KS
∂gm

=

[

∑

m′

e−ρgm′
]−1

e−ρgm . (4.25)

The second term is easily derived from the definition of the stress constraints (1.8),

∂gm
∂σm

= − 1
σy
. (4.26)

To obtain the third term of equation (4.24) we consider the expression that relates the
stresses to the displacement field,

σm = Smjuj . (4.27)

Given the linear nature of this relationship, the partial derivative we need is simply

∂σm
∂uj

= Smj . (4.28)
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Using these results we can rewrite the partial derivative (4.24) as

∂KS
∂uj

= −

[

σy
∑

m′

e−ρgm′
]−1

e−ρgm Smj . (4.29)

We use this term in the right-hand side of the structural adjoint equation (4.21) — or equa-
tion (4.15) in the aero-structural case — the to solve for the adjoint vector that corresponds
to the sensitivities of the KS function.

For the case where I = KS, the right-hand-side of the aerodynamic adjoint equa-
tion (4.15) includes ∂KS/∂wi. This term is zero, since the stresses do not depend explicitly
on the loads. They only depend on the loads implicitly, through the displacements.

Finally, the last partial derivative of the KS function, ∂KS/∂xn, appears in the total
sensitivity equation (4.17). This term represents the variation of the lumped stresses for
fixed loads and displacements. As in the case of the partial derivative with respect to the
displacements (4.24), we can use the chain rule to write

∂KS
∂xn

=
∂KS
∂gm

∂gm
∂σm

∂σm
∂xn

. (4.30)

Since we have derived the two first partial derivative terms (4.25,4.26) we are left with only
one new term, the partial derivative of the stresses with respect to the design variables.
Taking the derivative of the stress-displacement relationship (4.27) yields

∂σm
∂xn

=
∂Smj
∂xn

uj , (4.31)

where ∂Smj/∂xn is calculated using finite differences. For element thickness design vari-
ables, ∂σm/∂xn = 0. However, when the OML is perturbed, the stresses in a given element
can vary if its shape is distorted.

4.4 Sensitivity Validation Results

We now present the results of the implementation of the LCA method to the aero-structural
analysis framework described in Chapter 2. The results shown herein correspond to the
supersonic business jet configuration detailed in the next chapter, in Section 5.1.

To compute the flow for this configuration, we use the CFD mesh shown in Figure 4-3.
This is a multiblock Euler mesh with 36 blocks and a total of 220,000 mesh points. The
structural model of the wing is also shown in Figure 4-3, and a more detailed drawing of
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Figure 4-3: Aero-structural model of the supersonic business jet configuration, showing a
slice of the flow mesh and the internal structure of the wing.

the wing model can be found in Figure 2-1. The model consists of a wing box with six spars
evenly distributed from 15% to 80% of the chord. Ribs are distributed along the span at
every tenth of the semispan. A total of 640 finite elements were used in the construction of
this model.

To gain confidence in the effectiveness of the aero-structural coupled-adjoint sensitivities
for use in design optimization, we must ensure that the values of the gradients are accurate.
For this purpose, we chose to validate the four sets of sensitivities discussed below. For
comparison purposes only, we compute the exact discrete value of these sensitivities using
the complex-step derivative approximation presented in Chapter 3.

In this sensitivity study two different functions are considered: the aircraft drag co-
efficient, CD, and the KS function (1.9). The sensitivities of these two quantities with
respect to both OML shape design variables and structural design variables are computed
and discussed. The design variables are as described in Section 1.4.3.

4.4.1 Drag Coefficient Sensitivities

The values of the aero-structural sensitivities of the drag coefficient with respect to shape
perturbations are shown in Figure 4-4. The ten shape perturbations were chosen to be
Hicks–Henne functions distributed chordwise on the upper surface of two adjacent airfoils
around the quarter span. The plot shows very good agreement between the coupled-adjoint
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Figure 4-4: Sensitivities of the drag coefficient with respect to shape perturbations.

and the complex-step results, with an average relative error between the two of only 3.5%.
Note that all these sensitivities are total sensitivities in the sense that they account for the
coupling between aerodynamics and structures.

To verify the need for taking the coupling into account, the same set of sensitivities was
calculated for fixed structural displacements, where the displacement field is frozen after the
aero-structural solution. This is, in some sense, similar to assuming that the wing, after the
initial aeroelastic deformation, is infinitely rigid as far as the computation of sensitivities
is concerned. When calculating these sensitivities using the complex step, the reference
solution is aero-structural, but only the flow solver is called for each shape perturbation.
When using the adjoint method, this is equivalent to solving only the aerodynamic adjoint
in (4.15) and omitting the partial derivatives of Sl in the gradient calculation (4.17). Fig-
ure 4-4 shows that the single-system sensitivities exhibit significantly lower magnitudes and
even opposite signs for many of the design variables when compared with the coupled sen-
sitivities. The use of single-discipline sensitivities would therefore lead to erroneous design
decisions.
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Figure 4-5: Sensitivities of the drag coefficient with respect to structural thicknesses.

Figure 4-5 also shows the sensitivity of the drag coefficient, this time with respect to
the thicknesses of five skin groups and five spar groups distributed along the span. The
agreement in this case is even better; the average relative error is only 1.6% respectively.
Even though these are sensitivities with respect to internal structural variables that do not
modify the jig OML, coupled sensitivity analysis is still required.

4.4.2 KS Function Sensitivities

The sensitivities of the KS function with respect to the two sets of design variables described
above are shown in Figures 4-6 and 4-7. The results show that the coupled-adjoint
sensitivities are extremely accurate, with average relative errors of 2.9% and 1.6%. In
Figure 4-7 we observe that the sensitivity of the KS function with respect to the first
structural thickness is much higher than the remaining sensitivities. This markedly different
magnitude is due to the fact that this particular structural design variable corresponds to
the thickness of the top and bottom skins of the wing bay closest to the root, where the
stress is the highest at this particular load condition.
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Figure 4-6: Sensitivities of the KS function with respect to shape perturbations.

The sensitivities of the KS function for fixed loads are also shown in Figures 4-6 and 4-
7. Using the complex-step method, these sensitivities were calculated by calling only the
structural solver after the initial aero-structural solution, which is equivalent to using just
equations (4.16, 4.17) without the partial derivatives of Ak after solving the aero-structural
system. The difference in these sensitivities when compared to the coupled ones is not as
dramatic as in the fixed displacements case shown in Figure 4-4, but it is still significant.

4.5 Computational Efficiency Study

4.5.1 Comparison of the Coupled Adjoint with Finite Differencing

The cost of calculating a gradient vector using either the finite-difference or the complex-
step methods is expected to be linearly dependent on the number of design variables. This
expectation is confirmed in Figure 4-8 where the gradient calculation times are shown for
increasing numbers of design variables. The time axis is normalized with respect to the
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Figure 4-7: Sensitivities of the KS function with respect to structural thicknesses.

time required for a single aero-structural solution (98 seconds on 9 processors of an SGI
Origin 2000).

The cost of a finite-difference gradient evaluation can be linearly approximated by the
equation 1.0+0.38×Nx, where Nx is the number of design variables. Notice that one might
expect this method to incur a computational cost equivalent to one aero-structural solution
per additional design variable. The cost per additional design variable is lower than this
because each additional aero-structural calculation does not start from a uniform flow-field
initial condition, but from the previously converged solution, which is closer to the final
solution.

The same applies to the cost of the complex-step method. Because the function evalu-
ations require complex arithmetic, the cost of the complex step method is, on average, 2.4
times higher than that of finite differencing. However, this cost penalty is worthwhile since
there is no need to find an acceptable step size a priori, as is the case for finite-difference
approximations [46, 47].
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plex step and coupled adjoint. The time is normalized with respect to the time required for
one aero-structural solution.

The cost of computing sensitivities using the coupled-adjoint procedure is in theory inde-
pendent of the number of variables. Using our implementation, however, some of the partial
derivatives in the total sensitivity equation (4.17) are calculated using finite differences and
therefore, there is a small dependence on the number of variables. The line representing
the cost of the coupled adjoint in Figure 4-8 has a slope of 0.01 which is between one and
two orders of magnitude less than the slope for the other two lines.

In short, the cost of computing sensitivities with respect to hundreds or even thousands
of variables is acceptable when using the coupled-adjoint approach, while it is impractical to
use finite-differences or the complex-step method for such a large number of design variables,
even with current state-of-the-art parallel computing systems.

4.5.2 Coupled-Adjoint Solution

The constant terms in the equations for the straight lines of Figure 4-8 represent the cost
of each procedure when no sensitivities are required. For the finite-difference case, this is
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Aero-structural solution 1.000

Aero-structural adjoint

Aerodynamic adjoint equation (4.15) 0.597

RHS of equation (4.15) 0.642

Structural adjoint equation (4.16) < 0.001

RHS of equation (4.16) 1.203

Table 4.1: Computational times for solving the LCA equations (4.15,4.16).

equivalent to one aero-structural solution, and hence the constant is 1.0. When performing
the aero-structural solution using complex arithmetic, the cost rises to 2.1 times the real
arithmetic solution.

The cost of computing the coupled-adjoint vectors (without computing the gradients)
is 3.4. This cost includes the aero-structural solution, which is necessary before solving the
adjoint equations, and hence the aero-structural adjoint computation alone incurs a cost of
2.4. To gain a better understanding of how this cost it divided, we timed the computation
for four different components of the aero-structural adjoint equations (4.15, 4.16) as shown
in Table 4.1.

The cost of solving the lagged aerodynamic adjoint equation (4.15) — not including the
computation of the right-hand-side vector — is about 0.6 times the aero-structural solution.
This is expected, since the cost of solving the adjoint equations of a given system is usually
similar to the cost of solving the corresponding governing equations. The cost of computing
right-hand-side of the same equation, is also about 0.6. This cost is almost exclusively
due to the lagged term ∂Sl/∂wi φ̃l, which is partially computed using finite differences, as
explained in Section 4.3.2. Note that the cost of computing this term is proportional to the
number of OML points, which is 4,200 in our calculations.

The computation time for solving the lagged structural adjoint equation (4.16) is neg-
ligible. Again, this does not account for the computation of the right-hand side of that
equation. The cost of solving this equation is so low because the factorization of the matrix
has already been computed and only a back-solve operation is required. The computation
time for the right-hand side of this equation, however, is rather high: 1.2. Again, this is
almost solely due to the lagged term, which is ∂Ak/∂uj ψ̃k in this case. As explained in
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Section 4.3.1 this term is computed using finite differences and therefore its cost is propor-
tional to the number of structural surface degrees of freedom, which in this case is equal to
396.

In Chapter 5 we will see that in realistic aero-structural design problems with hundreds
or even thousands of design variables, there is a considerable reduction in computational
cost when using the coupled-adjoint method as opposed to either finite differences or the
complex step. This is due to the fact that the cost associated with the adjoint method is
practically independent of the number of design variables.



Chapter 5

Aero-Structural Optimization

This chapter presents the results of the aero-structural optimization of a supersonic business
jet configuration using the coupled adjoint method detailed in Chapter 4, in conjunction
with a gradient-based optimizer.

5.1 Supersonic Business Jet Design Case

The aircraft configuration used in this example is the supersonic business jet shown in
Figure 5-1. This configuration is being developed by the ASSET Research Corporation and
is designed to achieve a high percentage of laminar flow on the low-sweep wing [67, 36]. The
greater the extent of laminar flow over the wing, the lower the aerodynamic friction drag,
resulting in decreased fuel consumption. The main objective of this concept is to make
supersonic flight more economical. The aircraft is to fly at Mach 1.5 and have a range of
5,300 nautical miles. Additional specifications are listed in Table 5.1.

Detailed mission analysis for this aircraft has determined that one count of drag (∆CD =
0.0001) is worth 310 pounds of empty weight. A very similar result can be obtained from
the Breguet range equation

R =
V

c

CL
CD

ln
Wi

Wf
, (5.1)

where V is the cruise velocity and c is the thrust specific fuel consumption of the powerplant.
CL/CD is the ratio of lift to drag, and Wi/Wf is the ratio of initial and final cruise weights
of the aircraft. The final cruise weight is the initial cruise weight minus the weight of the
fuel used in the cruise segment.

If we assume fixed initial cruise weight, velocity and lift coefficient, and chose to minimize
the final cruise weight, the only two quantities that vary in the Breguet equation are Wf

79
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Figure 5-1: Natural laminar flow supersonic business jet configuration.

and CD. Linearizing the Breguet range equation with respect these two variables yields

R = −αCD − βWf , (5.2)

where
−α =

∂R

∂CD
= −V

c

CL
C2
D

ln
Wi

Wf
, (5.3)

and
−β =

∂R

∂Wf
= −V

c

CL
CD

1
Wf

. (5.4)

The ratio of these two partial derivatives α and β represents the relative worth of the drag
and weight and we write this ratio as

α

β
=
Wf

CD
ln
Wi

Wf
. (5.5)

For this particular design, using the data from Table 5.1, yields a ratio of α/β = 3.04×106.
This is very close to the ratio given by the much more detailed mission analysis that was
previously mentioned, for which α/β = 310/0.0001 = 3.10× 106.

We can now maximize the linearized range of the business jet configuration by minimiz-
ing the objective function

I = αCD + βW, (5.6)
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Performance

Cruise Mach number 1.5

Range 5,300 nm

Take-off gross weight (TOGW) 100,000 lbs

Zero-fuel weight (ZFW) 47,500 lbs

Cruise altitude 51,000 ft

Cruise lift coefficient 0.1

Cruise drag coefficient 0.0116

Cruise TSFC 0.86

Wing geometry

Reference area 1750 ft2

Aspect ratio 3.0

Taper ratio 0.218

Table 5.1: Specifications for the natural laminar flow supersonic business jet.

where CD is the drag coefficient, W is the wing structural weight in pounds and α/β =
3.1× 106. Note that we are able to substitute the final cruise weight by the wing structural
weight, since the difference between the two is constant.

The optimization problem we ultimately want to solve is the simplified aircraft design
problem discussed in Chapter 1, i.e.,

minimize I = αCD + βW

xn ∈ Rn

subject to CL = CLT (5.7)

KS ≥ 0

xn ≥ xnmin .
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Figure 5-2: Description of the OML and structural design variables.

In this particular case, we consider only one cruise condition for the calculation of the drag
coefficient, and a separate maneuver condition for the structural stress constraints. The
cruise condition has a target lift coefficient of 0.1 while the one for the maneuver condition
is 0.2.

The geometry of the supersonic business jet was simplified for the purposes of solving this
aircraft optimization problem. Again, this represents only a proof-of-concept case to demon-
strate this design methodology and is not meant to represent a realistic full-configuration
case. The baseline geometry is the wing-body configuration shown in Figure 5-8. The body
is axisymmetric and exhibits a smooth variation in the cross-sectional distribution in the
longitudinal axis, with maximum area at around one third of the body length from the
nose. The wing sections are biconvex and have a constant thickness-to-chord ratio of 2%.

A description of all the design variables that are used in this optimization problem is
shown in Figure 5-2. In order to parameterize the shape of the aircraft, we have chosen
sets of design variables that apply to both the wing and the fuselage. The wing shape
is modified by optimization at six defining stations uniformly distributed from the wing-
body intersection to the tip of the wing. The shape modifications of these defining stations
are linearly lofted to a zero value at the previous and next defining stations. On each
defining station, the twist, the leading and trailing edge camber, and five Hicks–Henne
bump functions on both the upper and lower surfaces are allowed to vary. The leading and
trailing edge camber modifications are not applied at the first defining station. This yields
a total of 76 OML design variables on the wing. The wing planform remains constant in
this design problem, since planform optimization is only meaningful if additional disciplines
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and constraints are taken into account.

The shape of the fuselage is parameterized in such a way that its camber is allowed to
vary while the total volume remains constant. This is accomplished with 9 bump functions
evenly distributed in the streamwise direction starting at the 10% fuselage station. Fuselage
nose and trailing edge camber functions are added to the fuselage camber distribution in a
similar way to what was done with the wing sections.

The structural sizing is accomplished with 10 design variables, which correspond to the
skin thicknesses of the top and bottom surfaces of the wing. Each group is formed by
the plate elements located between two adjacent ribs. All structural design variables are
constrained to exceed a specified minimum gauge value.

The configuration is therefore parameterized with a total of 97 design variables. As
mentioned in an earlier section, the cost of aero-structural gradient information using our
coupled-adjoint method is effectively independent of the number of design variables: in
more realistic full configuration test cases that we are about to tackle, 500 or more design
variables will be necessary to describe the shape variations of the configuration (including
nacelles, diverters, and tail surfaces) and the sizing of the structure.

5.2 Integrated Aero-Structural Optimization

All the sensitivities required to solve this problem using gradient-based optimization are
computed using the LCA method described in Chapter 4. The optimization process is
carried out using the nonlinear constrained optimizer NPSOL [20]. Euler calculations are
performed on a wing-body 36-block mesh that is constructed from the decomposition of a
193 × 33 × 49 C-H mesh. During the process of the optimization, all flow evaluations are
converged to 5.3 orders of magnitude of the average density residual and the CL constraint
is achieved to within 10−6.

The optimization history of this design case is shown in Figure 5-3. The figure shows
the values of the coefficient of drag (in counts), the wing structural weight (in lbs), and the
value of the KS function for successive major design iterations. Note that the structural
constraints are satisfied when the KS function is positive. Because of the approximate
nature of the KS function, all structural constraints may actually be satisfied for small but
negative values of the KS function.

The values for drag coefficient, wing weight and KS function for the baseline design are
shown in the leftmost points of Figure 5-3 (zeroth major iteration). The KS function is
positive (KS = 0.115) indicating that all stress constraints are satisfied at the maneuver
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Figure 5-3: Convergence history of the aero-structural optimization.

condition. The cruise drag coefficient of 74.04 counts and a structural weight of 9,285 lbs.
The surface density distribution for the cruise condition and the structural stresses for this
baseline design are shown in Figure 5-8. Note that the drag coefficients quoted herein do
not include either the drag resulting from the empennage and nacelles, or the friction drag.

In the first two design iterations, the optimizer takes large steps in the design space,
resulting in a drastic reduction in both CD and W . However, this leads in a highly infea-
sible design that exhibits maximum stresses that are up to 2.1 times the yield stress of the
material. After these initial large steps, the optimizer manages to decrease the norm of the
constraint violation. This seems to have been accomplished by increasing the structural
skin thicknesses, since the weight increases while the drag is further reduced. Towards ma-
jor iteration 10, there is no visible progress for several iterations while the design remains
infeasible. A large step is taken in iteration 13 that results in a sudden increase in feasibility
accompanied by an equally sudden increase in CD. The optimizer has established that the
only way to obtain a feasible design is by increasing the wing thickness (with the conse-
quent increases in CD and weight) and the structural thicknesses. From that point on, the
optimizer rapidly converges to the optimum. After 43 major iterations, the KS constraint is
reduced to O(10−4) and all stress constraints are satisfied. The aero-structurally optimized
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Figure 5-4: Wing pressure coefficient distributions for the baseline and optimized designs.

result has CD = 0.006922 and a total wing structure weight of 5,546 lbs.

The fact that NPSOL is able to find the optimum for a constrained nonlinear problem
with almost 100 design variables in less than 50 major design iterations is truly remarkable.
NPSOL also showed to be rather robust, as it was able to recover from several iterations
of no significant improvement. We should note that NPSOL has now been succeeded by
SNOPT [21] and that this new optimizer would offer even better performance.

The visualizations of the optimized configuration is shown in Figure 5-9. Measures
of performance and feasibility are written in the first section of Table 5.2. The left half
of Figure 5-9 shows the surface flow density distribution at the cruise condition with the
corresponding structural deflections at the cruise condition for the design. The right half
shows an exploded view of the stress distribution on the structure (spar caps, spar shear
webs, and skins, from top to bottom) at the CL = 0.2 maneuver condition.
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Figure 5-5: Spanwise twist distribution of the baseline and optimized designs.

By comparing the baseline and optimized results of Figures 5-8 and 5-9 one can appre-
ciate that the surface density distributions changed substantially at the cruise condition. A
more detailed view of the aerodynamics of both the baseline and optimized configurations
is shown in the pressure coefficient distribution of Figure 5-4.

It is also worth noting that about half of the improvement in the CD of the optimized
configuration results from drastic changes in the fuselage shape: both front and aft camber
have been added to distribute the lift more evenly in the streamwise direction in order to
reduce the total lift-dependent wave drag.

The structural element stresses at the maneuver condition also exhibit dramatic changes.
In fact, as expected from a design case with a single load condition, the optimized structure
is nearly fully-stressed, except in the outboard sections of the wing, where the minimum
gauge constraints are active.

The spanwise twist distribution is more clearly seen in Figure 5-5. the twist distribution
has changed dramatically through a combination of both OML design variables and aeroe-
lastic deflections by adding almost 2 degrees of negative twist along most of the span. Since
the wing washout angle was constrained to a minimum of −2 degrees, this is an indication
of the fact that additional improvements in the induced drag of the configuration may result
from further modifications to the twist distribution.

When comparing the wings of Figures 5-8 and 5-9 we can see that the spanwise dis-
tributions of airfoil maximum thickness differ significantly. The baseline wing has a linear
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Figure 5-6: Airfoil geometry at the root.
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Figure 5-7: Airfoil geometry at mid semi-
span.

distribution due to the constant thickness-to-chord ratio. The optimized design has thicker
airfoils near the root, where the bending moments are highest, but then quickly decreases
the airfoil thickness-to-chord ratio below the baseline values towards the the tip. The air-
foil geometries for the root and mid semi-span sections are shown in Figures 5-6 and 5-7,
respectively.

In order to solve this optimization problem, total of 50 major design iterations including
aero-structural analyses, coupled adjoint solutions, gradient computations, and line searches
were performed in approximately 20 hours of wall clock time using 18 processors of an
SGI Origin 3000 system (R12000, 400 MHz processors). Since these are not the fastest
processors currently available, we expect that much larger models can be optimized with
overnight turnaround in the near future.

5.3 Comparison with Sequential Optimization

The usefulness of a coupled aero-structural optimization method can only be measured in
comparison with the results that can be obtained using current state-of-the-art practices.
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In the case of aero-structural design, the typical approach is to carry out aerodynamic
shape optimization with artificial airfoil thickness constraints meant to represent the effect
of the structure, followed by structural optimization with a fixed OML. As discussed in
Section 1.4.2, sequential optimization cannot be guaranteed to convergence to the true
optimum of a coupled system. In order to determine the difference between the optima
achieved by fully-coupled and sequential optimizations, we also performed one cycle of
sequential optimization within the analysis and design framework.

To prevent the optimizer from thinning the wing to an unreasonable degree during the
aerodynamic shape optimization, 5 thickness constraints are added to each of the 6 defining
stations for a total of 30 linear constraints. These constraints are such that, at the points
where they are applied, the wing box is not allowed to get any thinner than the original
design.

After the process of aerodynamic shape optimization is completed, the initial CD has
decreased to 0.006992 as shown in the lower portion of Table 5.2. After fixing the OML,
structural optimization is performed using the maneuver loads for the baseline configuration
at CL = 0.2. The structural optimization process reduces the weight of the wing structure
to 6,567 lbs.

We can now compare the results of the fully coupled optimization in the previous section
and the outcome of the process of sequential optimization. The differences are clear: the
coupled aero-structural optimization was able to achieve a design with a range of 7,361 nm,
which is 224 nm higher than that obtained from the sequential optimization.

Finally, note that since sequential optimization neglects the aero-structural coupling in
the computation of maneuver loads, there is no guarantee that the resulting design will be
feasible. In fact, the aero-structural analysis shows that the value of the KS function is
slightly negative.
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Chapter 6

Conclusions and Development Directions

The motivation for this dissertation was to introduce high-fidelity analysis tools to the field
of multidisciplinary design of aircraft configurations. Two core disciplines were considered:
aerodynamics and structures, leading to the development of a framework for high-fidelity
aero-structural analysis. In order to reap the benefits of this high-fidelity framework, the
design was parameterized using a large number of variables. Since optimization problems
with large numbers of variables are solved most efficiently using gradient-based optimization
algorithms, it quickly became apparent that the major obstacle to performing high-fidelity
aero-structural optimization was the computation of the gradients. The contributions of
this dissertation are associated to two methods for the computation of multidisciplinary
sensitivities: the aero-structural adjoint method, which fulfilled the premise of high-fidelity
aero-structural optimization, and the complex-step derivative approximation, which pro-
vided an indispensable benchmark.

An adjoint method for coupled sensitivity analysis of high-fidelity aero-structural sys-
tems was presented. The aero-structural adjoint sensitivity equations were compared with
other formulations to show that, as in the case of single disciplines, the adjoint approach
is preferred when the number of design variables is significantly larger than the number
of functions of interest. An alternate adjoint formulation, which had not been previously
published, was introduced.

The sensitivities computed by the lagged-coupled adjoint method were compared to
sensitivities given by the complex-step derivative approximation and shown to be extremely
accurate, having an average relative error of 2% for the cases tested. Comparison with
single-discipline sensitivities showed that the true fully-coupled sensitivities are essential
for performing aero-structural design optimization.

In realistic aero-structural design problems with hundreds of design variables, there is
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a considerable reduction in computational cost when using the coupled-adjoint method as
opposed to either other analytic approaches — such as the coupled-direct method — or
approaches with easier implementations, such as finite differencing and the complex-step
approximation. This advantage is due to the fact that the cost associated with the adjoint
method is almost independent of the number of design variables.

The coupled sensitivities computed using the methodology developed in this dissertation
were successfully employed to solve a proof-of-concept aircraft design problem for the case of
a supersonic business jet configuration. This configuration was parameterized with a large
number of aerodynamic and structural variables, and two different flight conditions were
considered: a cruise condition for which the drag coefficient was minimized and a maneuver
condition for which the structural stress constraints were enforced. The outcome of this
optimization was compared with the traditional method of sequential optimization and it
was found that the integrated approach yielded a better design.

Future work in the development of the aero-structural design framework is expected
to add further capabilities such that more realistic aircraft design problems can be solved.
To achieve this, more than two flight conditions should be considered, and the current
infrastructure allows it. Some of the additional flight conditions would be associated with
aerodynamic performance. In the case of the natural laminar flow supersonic business jet,
for example, it would be extremely useful to include a subsonic cruise condition for overland
flight. Other flight conditions would be critical aerodynamic load cases associated with the
structural stress constraints. Additional non-aerodynamic load cases such as taxi bumps
could also be considered.

Another interesting improvement to the aero-structural design framework would involve
adding of more shape and wing planform design variables to the parameterization of aircraft
configurations as well as increasing in the complexity of the geometry to include diverters,
nacelles, and empennage.

Although the KS function that was used to lump the stress constraints seemed to work
well in the design case that was presented, more research is needed to determine the con-
sequences of using this lumping function, namely how it affects the efficiency of the opti-
mization process and the accuracy of the optimum result.

The development of the complex-step derivative approximation proved to be crucial
in achieving the main goal of this dissertation. In one particular case, an error in the
implementation of the lagged-coupled adjoint was found only because the benchmark results
given by the complex-step estimates were accurate enough to make this error obvious, when
comparisons with finite-difference results were inconclusive.
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The research into the application of the complex-step method to real-world numerical
algorithms yielded several new insights. Solutions to subtle problems in its implementation
were clarified, and its relationship to traditional algorithmic differentiation methods was
exposed. This enabled the application of a substantial body of knowledge — that of the
algorithmic differentiation community — to the complex-step method, answering many
important questions.

The implementation process of the complex-step derivative approximation was success-
fully automated for two large solvers, including an iterative one. The resulting derivative
estimates were validated by comparison with results obtained with better-known methods.

The complex-step method, unlike the finite-difference approximations, was shown to
have the advantage of being step size insensitive and for small enough steps, the accuracy
of the sensitivity estimates was only limited by the numerical precision of the algorithm.

The examples presented herein illustrate these points and put forward two excellent uses
for the method: validating a more sophisticated gradient calculation scheme and provid-
ing accurate and smooth gradients for analyses that accumulate substantial computational
noise.
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Appendix A

Low-Fidelity Aero-Structural Optimization

This appendix describes how the results shown in Figure 1-6 were obtained. This study was
carried out in order gain a better understanding of the different coupled sensitivity analysis
methods and to learn about the implementation issues on a simple problem before dealing
with the added complexity of the high-fidelity aero-structural solver.

A.1 Governing Equations

The structural model is composed of a single wing spar with circular cross-section which is
modeled by tubular beam finite elements. The structural finite-element equations can be
written as

Ku− f = 0 (A.1)

where K is stiffness matrix of the structure, u is the vector of displacements and rotations
(6 degrees of freedom per node) and f is the vector of external forces. The spar geometry
and discretization is shown in Figure A-1.

The aerodynamic analysis is performed by a panel code, which models a wing and solves
the linear system

AΓ− v = 0, (A.2)

where A is the aerodynamic influence coefficients matrix, Γ is the vector of panel circulations
and v is the vector of panel boundary conditions, which is simply the local angle of attack
of each panel. Figure A-1 shows how the panels are distributed on the wing.

When solving the aero-structural system, we also want the wing to produce the lift
required to maintain level flight, i.e.,

L−W = 0, (A.3)
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Figure A-1: Aerodynamic and structural discretization of the wing, showing structural
displacements. Note that the structure consists of a tubular spar.

where L is the total wing lift and W is the total weight of aircraft. This requirement can
be satisfied by setting the angle of attack, α, to the appropriate.

The simultaneous solution of these three sets of equations (A.1–A.3) defines the state of
the aero-structural system. The state variables of the coupled system are u, Γ, and α. The
matrices A, K and the aircraft weight, W are constant. Note that the remaining variables
that are not state variables have the following dependencies,

v = v(u, α), (A.4)

f = f(Γ), (A.5)

L = L(Γ). (A.6)

A schematic representation of these dependencies is shown in Figure A-2.

We now want to use Newton’s method to solve the simultaneous equations (A.1–A.3).
Using calculus of variations we can take the total variation of each governing equation.
When the system is solved, each governing equation equals zero. Then, any variation of the
governing equations must also be zero for the system to remain solved. Starting with the
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structural equations,

(Ku− f) + δ (Ku− f) = 0⇒ (A.7)

Kδu− ∂f

∂Γ
δΓ = f −Ku. (A.8)

Here we used the fact that the forces do not depend directly on the displacements or the
angle of attack. For the aerodynamic equations we obtain,

(AΓ− v) + δ (AΓ− v) = 0⇒ (A.9)

AδΓ− ∂v

∂u
δu− ∂v

∂α
δα = v −AΓ. (A.10)

Finally, for the lift constraint equation, we find that

(L−W ) + δ (L−W ) = 0⇒ (A.11)
∂L

∂Γ
δΓ = W − L. (A.12)

Writing these equations in matrix form we obtain,
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. (A.13)

This constitutes the Newton method for coupled systems. Since the system is linear, the
Newton iteration converges a single step.

In addition to solving for the state of the system, the aero-structural analysis module
also computes the total drag of the wing (D), the structural weight (Ws) and the range (R)
using the Breguet range equation

R(L,Ws) =
V

c

L

D
ln

Wi

Ws +W0
, (A.14)

where V is the cruise velocity and c is the thrust specific fuel consumption of the powerplant.
L/D is the ratio of lift to drag, and Wi/(Ws + W0) is the ratio of initial and final cruise
weights of the aircraft. Note that the final cruise weight is the structural weight plus a
constant weight.
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A.2 Coupled Sensitivity Analysis

The sensitivities of drag coefficient and structural stresses with respect the wing twist
distribution and finite-element thicknesses were computed using both the direct and adjoint
methods described in Chapter 4. Based on the notation of that chapter, we set

Rk′ =
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, yi′ =
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. (A.15)

The matrix of sensitivities of the governing equation residuals with respect to the state
variables of the system is the same as the matrix used in the Newton iteration (A.13), i.e.,

∂Rk
∂yi

=
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(A.16)

We can now use either the direct or adjoint methods to calculate the total sensitivity of the
drag or structural stress using equation (4.6).

A.3 Optimization Results

To optimize this design, we chose to maximize the range. A simplified aircraft design
optimization problem can be stated as follows:

maximize R(D(γ, t),Ws(t))

with respect to γ, t

subject to L = W (A.17)

σ ≤ σyield

t ≥ tmin.
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Performance

Cruise Mach number 0.8

Range 3,000 nm

Cruise altitude 40,000 ft

Cruise TSFC 0.58

Wing geometry

Span 60 ft

Sweep 30 degrees

Aspect ratio 8

Taper ratio 0.3

Table A.1: Specifications for the small transonic business jet.

The design variables include the jig twist distribution of the wing (γ), and the wall thick-
nesses of the tube finite-elements that form the wing spar (t). The drag corresponds to the
initial cruise condition and the stresses correspond to a 2.5g maneuver condition.

To demonstrate this simple aircraft design methodology, we chose to optimize the wing
of a typical business jet. The specifications for this particular configuration are listed in
Table A.1. The results for the baseline configuration are shown in Figure A-3. Note that
linear distributions are set for both the jig twist of the wing an the wall thicknesses of the
tubular finite elements. From the twist distribution of the deflected wing, we can see that
the wing twists down, which is expected for a swept configuration. The values for all the
finite-element stresses are below the yield stress (represented by the red line).

The results obtained by solving the optimization problem (A.17) are shown in Figure A-
4. The optimized structure is thickest at the root, and the reaches the minimum gauge at
around 20 ft from the root. The finite elements are fully stressed up to this same point. The
optimization problem (A.17) was also solve without structural variables for a rigid wing.
The results of this case are depicted in Figure A-5. The optimized lift distribution matches
the elliptic distribution exactly.
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Figure A-2: Schematic representation of the aerodynamic and structural equations, showing
the coupling between the two and the variable dependencies.
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Figure A-4: Optimized twist, tube thickness, vertical displacement, lift, and stress distri-
butions.
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